{
"cells": [
{
"cell_type": "markdown",
"id": "edd718da-1295-49c4-b556-3cc7b718f93c",
"metadata": {
"tags": []
},
"source": [
"# Data Preparation and Quality\n",
"Lecture Data Engineering and Analytics \n",
"Eva Zangerle"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "5b126eda-5b79-4531-b8ea-72898d09dc6d",
"metadata": {},
"outputs": [],
"source": [
"# import required packages\n",
"import json\n",
"import os\n",
"from pprint import pprint\n",
"from sys import getsizeof\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import plotly.express as px\n",
"import seaborn as sns\n",
"import sklearn.datasets\n",
"import sklearn.preprocessing as preproc\n",
"from matplotlib import cm\n",
"from matplotlib.colors import ListedColormap\n",
"from scipy import stats\n",
"from sklearn import linear_model, preprocessing\n",
"from sklearn.cluster import DBSCAN, KMeans\n",
"from sklearn.decomposition import PCA\n",
"from sklearn.feature_extraction import FeatureHasher, text\n",
"from sklearn.impute import SimpleImputer\n",
"from sklearn.metrics import pairwise_distances_argmin"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5406f6f3-1c06-4f3b-aaaf-9ac6f2967729",
"metadata": {},
"outputs": [],
"source": [
"data_dir = \"../data\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a870c325-706d-4c07-bb57-e3b84322e6e4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Author: Eva Zangerle\n",
"\n",
"Last updated: 2021-12-11 14:18:48\n",
"\n"
]
}
],
"source": [
"%load_ext watermark\n",
"%watermark -a \"Eva Zangerle\" -u -d -t"
]
},
{
"cell_type": "markdown",
"id": "de6ba96a-a20d-4c9e-bb38-46b80ab6ae1f",
"metadata": {},
"source": [
"## Enhancing Features"
]
},
{
"cell_type": "markdown",
"id": "05832b33-0bb8-4496-a2a1-f23f8c7927b1",
"metadata": {},
"source": [
"### Scaling and Normalization"
]
},
{
"cell_type": "markdown",
"id": "45b0f558-ce94-4349-a525-d65e09db72f8",
"metadata": {},
"source": [
"The following example is based on the online news popularity dataset (taken from the UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/online+news+popularity). The dataset provides set of features about articles published by Mashable in a period of two years and was originally used for predicting popularity of articles in social networks. In the following example, we are primarily interested in the word count for each article (`n_tokens_content`) and showcase the results of different scaling methods. This example is adapted from the FeatEng book."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "5b966c0f-b892-408f-935f-d6fcb26db76c",
"metadata": {},
"outputs": [],
"source": [
"news = pd.read_csv(\n",
" os.path.join(data_dir, \"OnlineNewsPopularity.csv\"),\n",
" delimiter=\", \",\n",
" engine=\"python\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "071c9705-c8a4-486b-b124-0a55583d412f",
"metadata": {},
"source": [
"
\n",
"Note: We use `, ` as a delimiter here. If we would use only the comma as a delimiter, we would be able to read the dataframe, but for instance, accessing a specific field would fails as the key is not recognized due to the trailing space. Furthermore, we specify the python parsing engine to allow separators of more than one character.
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# histogram of number of movies with given number of ratings\n",
"# (binned value counts)\n",
"fig, axes = plt.subplots(1, 2, figsize=(15, 5))\n",
"axes[0].hist(rating_counts, bins=100)\n",
"axes[0].set_ylabel(\"Number of Movies\")\n",
"axes[0].set_xlabel(\"Number of Ratings\")\n",
"axes[1].hist(rating_counts, log=True, bins=100)\n",
"axes[1].set_ylabel(\"Number of Movies (log)\")\n",
"axes[1].set_xlabel(\"Number of Ratings\");"
]
},
{
"cell_type": "markdown",
"id": "d13a1272-f61c-486d-bd0a-7ad95dcd627e",
"metadata": {},
"source": [
"Another example is the number of words in an article as already shown previously as part of the news popularity dataset."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "e89f79a5-ecfd-4d19-8499-9ed7b650c745",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAJNCAYAAACBe1nxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABC6UlEQVR4nO3dfZhdZX3v//dH8IESBBQ6BwNtQLGtmoqYImprg1ZEaEH9qYXDTwE5jZ6iYkuvGqyV/uqxxVp8rtpUqGiRSPGBFLBK0UGt5SmiBEQOEWNNiqCCgaBiA9/fH3sN7EzmYSeZPbNm7/fruuaate5177W+a629Z3/nXuted6oKSZIktc/D5joASZIkTcxETZIkqaVM1CRJklrKRE2SJKmlTNQkSZJaykRNkiSppXae6wD6Za+99qpFixb1dRv33nsvu+66a1+3obnj+R1cntvB5vkdbIN6flevXv3Dqtp7fPnAJmqLFi3i2muv7es2RkdHWbp0aV+3obnj+R1cntvB5vkdbIN6fpN8d6JyL31KkiS1lImaJElSS5moSZIktZSJmiRJUkuZqEmSJLWUiZokSVJLmahJkiS1lImaJElSS5moSZIktZSJmiRJUksN7BBSbbdo+SVbla0786g5iESSJLWVLWqSJEktZaImSZLUUiZqkiRJLWWiJkmS1FImapIkSS1loiZJktRSPp5jFkz0KA5JkqTp2KImSZLUUiZqkiRJLWWiJkmS1FImapIkSS1loiZJktRSJmqSJEktZaImSZLUUiZqkiRJLWWiJkmS1FImapIkSS1loiZJktRSJmqSJEktZaImSZLUUiZqkiRJLWWiJkmS1FImapIkSS3V10Qtyboka5J8Pcm1TdljklyW5Jbm955NeZK8N8naJNcnObhrPSc09W9JckI/Y5YkSWqL2WhRO6yqDqqqJc38cuDyqjoQuLyZB3ghcGDzswz4IHQSO+AM4BnAIcAZY8mdJEnSIJuLS5/HAOc20+cCL+oq/2h1XAnskWQf4AXAZVV1Z1XdBVwGHDHLMUuSJM26fidqBXw+yeoky5qykaq6rZn+PjDSTC8Evtf12vVN2WTlkiRJA23nPq//N6tqQ5JfBC5L8q3uhVVVSWqmNtYkg8sARkZGGB0dnalVT2jTpk09beO0xZt7Wl+/49W26fX8av7x3A42z+9gG7bz29dErao2NL/vSPJpOveY3Z5kn6q6rbm0eUdTfQOwX9fL923KNgBLx5WPTrK9FcAKgCVLltTSpUsnqjZjRkdH6WUbJy6/pKf1rTt++nVp9vR6fjX/eG4Hm+d3sA3b+e3bpc8kuybZbWwaOBy4AVgFjPXcPAG4qJleBbyy6f15KLCxuUT6OeDwJHs2nQgOb8okSZIGWj9b1EaATycZ287Hq+pfk1wDXJDkZOC7wMub+pcCRwJrgZ8AJwFU1Z1J3gpc09T7y6q6s49xS5IktULfErWquhV46gTlPwKeN0F5AadMsq5zgHNmOkZJkqQ2c2QCSZKkljJRkyRJaikTNUmSpJYyUZMkSWopEzVJkqSWMlGTJElqKRM1SZKkljJRkyRJaikTNUmSpJYyUZMkSWopEzVJkqSWMlGTJElqKRM1SZKkljJRkyRJaikTNUmSpJYyUZMkSWopEzVJkqSWMlGTJElqKRM1SZKkljJRkyRJaikTNUmSpJYyUZMkSWqpnec6AD1k0fJLtipbd+ZRcxCJJElqA1vUJEmSWspETZIkqaVM1CRJklrKRE2SJKmlTNQkSZJaykRNkiSppUzUJEmSWspETZIkqaVM1CRJklqq74lakp2SXJfk4mZ+/yRXJVmb5BNJHtGUP7KZX9ssX9S1jtOb8puTvKDfMUuSJLXBtIlaklOTPDodZyf5WpLDt2EbpwI3dc2/HXhXVT0BuAs4uSk/GbirKX9XU48kTwKOBZ4MHAF8IMlO27B9SZKkeamXFrVXVdXdwOHAnsArgDN7WXmSfYGjgA838wGeC1zYVDkXeFEzfUwzT7P8eU39Y4CVVXVfVX0HWAsc0sv2JUmS5rNeErU0v48EPlZVN3aVTefdwJ8CDzTzjwV+XFWbm/n1wMJmeiHwPYBm+cam/oPlE7xGkiRpYO3cQ53VST4P7A+cnmQ3Hkq8JpXkd4E7qmp1kqU7FGWPkiwDlgGMjIwwOjra1+1t2rSpp22ctnjztHUm0+990OR6Pb+afzy3g83zO9iG7fz2kqidDBwE3FpVP0nyWOCkHl73bODoJEcCjwIeDbwH2CPJzk2r2b7Ahqb+BmA/YH2SnYHdgR91lY/pfs0WqmoFsAJgyZIltXTp0h7C3H6jo6P0so0Tl1+y3dtYd/z061d/9Hp+Nf94bgeb53ewDdv57eXSZwFPAl7fzO9KJ/Ga+kVVp1fVvlW1iE5ngC9U1fHAF4GXNtVOAC5qplc18zTLv1BV1ZQf2/QK3R84ELi6h7glSZLmtV4StQ8AzwSOa+bvAf5uB7b5RuCPk6ylcw/a2U352cBjm/I/BpYDNPfEXQB8E/hX4JSqun8Hti9JkjQv9HLp8xlVdXCS6wCq6q6xZ5/1qqpGgdFm+lYm6LVZVT8DXjbJ698GvG1btilJkjTf9dKi9t/Nc8sKIMne9NCZQJIkSTuml0TtvcCngV9M8jbgK8Bf9TUqSZIkTX/ps6rOS7IaeB6d56e9qKpumuZlkiRJ2kGTJmpJHtM1ewdwfveyqrqzn4FJkiQNu6la1FbTuS9tbBSCan6nmT6gj3FJkiQNvUkTtarafzYDkSRJ0pam7UyQ5MVJdu+a3yPJi/oalSRJknrq9XlGVW0cm6mqHwNn9C0iSZIkAb0lahPV6eVBuZIkSdoBvSRq1yZ5Z5LHNz/vpNPRQJIkSX3US6L2OuDnwCean/uAU/oZlCRJknp74O29NAOkS5IkafZM9cDbd1fVG5L8Cw89Q+1BVXV0XyOTJEkaclO1qH2s+f23sxGIJEmStjTVA2/HOgwcVFXv6V6W5FTgin4GJkmSNOx66UxwwgRlJ85wHJIkSRpnqnvUjgP+J3BAklVdi3YDHJBdkiSpz6a6R+2rwG3AXsBZXeX3ANf3MyhJkiRNfY/ad5OsB35WVd6PJkmSNMumfI5aVd2f5IEku3eP96nJLVp+yVyHIEmSBkQvY3ZuAtYkuQy4d6ywql7ft6gkSZLUU6L2qean21YPwFV/TNRCt+7Mo+YgEkmSNNt6GULq3O75JPsBx/YtIkmSJAG9PUeNJHsn+cMkXwZGgZG+RiVJkqQpn6O2G/ASOs9SeyKdy5/7V9W+sxSbJEnSUJvq0ucdwNXAm4GvVFUlefHshCVJkqSpLn2eDjwS+ABwepLHz05IkiRJgikStap6d1UdChzTFH0GeFySNyZ54mwEJ0mSNMym7UxQVbdW1V9V1WJgCfBo4NK+RyZJkjTkeur1OaaqbqiqP6uqJ/QrIEmSJHVsU6ImSZKk2WOiJkmS1FKTJmpJLm9+v332wpEkSdKYqVrU9knyLODoJE9LcnD3z3QrTvKoJFcn+UaSG5P8f035/kmuSrI2ySeSPKIpf2Qzv7ZZvqhrXac35TcnecEO7rMkSdK8MNUDb98C/DmwL/DOccsKeO40674PeG5VbUrycOArST4L/DHwrqpameRDwMnAB5vfd1XVE5IcC7wd+P0kT6IztuiTgccB/5bkiVV1/zbtqSRJ0jwz1XPULqyqFwJ/U1WHjfuZLkmjOjY1sw9vfsYSvAub8nOBFzXTxzTzNMuflyRN+cqquq+qvgOsBQ7Zpr2UJEmah6ZqUQOgqt6a5GjgOU3RaFVd3MvKk+wErAaeAPwd8G3gx1W1uamyHljYTC8Evtdsc3OSjcBjm/Iru1bb/RpJkqSBNW2iluSv6bRgndcUnZrkWVX1pule21yePCjJHsCngV/dgVinlWQZsAxgZGSE0dHRfm6OTZs2bbWN0xZvnrjyDOr3fqljovOrweC5HWye38E2bOd32kQNOAo4qKoeAEhyLnAdMG2iNqaqfpzki8AzgT2S7Ny0qu0LbGiqbQD2A9Yn2RnYHfhRV/mY7teM384KYAXAkiVLaunSpb2GuF1GR0cZv40Tl1/S120CrDt+6bR1tOMmOr8aDJ7bweb5HWzDdn57fY7aHl3Tu/fygiR7Ny1pJNkFeD5wE/BF4KVNtROAi5rpVc08zfIvVFU15cc2vUL3Bw4Eru4xbkmSpHmrlxa1vwaua1rEQudeteU9vG4f4NzmPrWHARdU1cVJvgmsTPJ/6LTMnd3UPxv4WJK1wJ10enpSVTcmuQD4JrAZOMUen5IkaRj00png/CSjwG80RW+squ/38LrrgadNUH4rE/TarKqfAS+bZF1vA9423TYlSZIGSS8talTVbXQuQUqSJGmWONanJElSS/XUoqZ2WTRBz9J1Zx41B5FIkqR+mrJFLclOSb41W8FIkiTpIVMmak3vypuT/NIsxSNJkqRGL5c+9wRuTHI1cO9YYVUd3beoJEmS1FOi9ud9j0KSJElb6eU5alck+WXgwKr6tyS/AOzU/9AkSZKG27SP50jyB8CFwN83RQuBz/QxJkmSJNHbc9ROAZ4N3A1QVbcAv9jPoCRJktRbonZfVf18bCbJzkD1LyRJkiRBb4naFUneBOyS5PnAPwP/0t+wJEmS1Euithz4AbAGeDVwKfDmfgYlSZKk3np9PpDkXOAqOpc8b64qL31KkiT12bSJWpKjgA8B3wYC7J/k1VX12X4HJ0mSNMx6eeDtWcBhVbUWIMnjgUsAEzVJkqQ+6uUetXvGkrTGrcA9fYpHkiRJjUlb1JK8pJm8NsmlwAV07lF7GXDNLMQmSZI01Ka69Pl7XdO3A7/dTP8A2KVvEUmSJAmYIlGrqpNmMxBJkiRtqZden/sDrwMWddevqqP7F5YkSZJ66fX5GeBsOqMRPNDXaCRJkvSgXhK1n1XVe/seiSRJkrbQS6L2niRnAJ8H7hsrrKqv9S0qSZIk9ZSoLQZeATyXhy59VjMvSZKkPuklUXsZcEBV/bzfwUiSJOkhvSRqNwB7AHf0NxTtiEXLL5mwfN2ZR81yJJIkaab0kqjtAXwryTVseY+aj+eQJEnqo14StTP6HoUkSZK2Mm2iVlVXzEYgkiRJ2lIvIxPcQ6eXJ8AjgIcD91bVo/sZmCRJ0rDrpUVtt7HpJAGOAQ7tZ1CSJEmCh21L5er4DPCC6eom2S/JF5N8M8mNSU5tyh+T5LIktzS/92zKk+S9SdYmuT7JwV3rOqGpf0uSE7ZtFyVJkuanXi59vqRr9mHAEuBnPax7M3BaVX0tyW7A6iSXAScCl1fVmUmWA8uBNwIvBA5sfp4BfBB4RpLH0OnQsITOJdjVSVZV1V097qMkSdK81Euvz9/rmt4MrKNz+XNKVXUbcFszfU+Sm4CFzWuXNtXOBUbpJGrHAB+tqgKuTLJHkn2aupdV1Z0ATbJ3BHB+D7FLkiTNW73co3bSjm4kySLgacBVwEiTxAF8HxhpphcC3+t62fqmbLJySZKkgTZpopbkLVO8rqrqrb1sIMkC4JPAG6rq7k5/hIdWkqQmffE2SrIMWAYwMjLC6OjoTK16Qps2bdpqG6ct3tzXbW6rfh+DQTbR+dVg8NwONs/vYBu28ztVi9q9E5TtCpwMPBaYNlFL8nA6Sdp5VfWppvj2JPtU1W3Npc2xoak2APt1vXzfpmwDD10qHSsfnWh7VbUCWAGwZMmSWrp06UTVZszo6Cjjt3HiJEM5zZV1xy+d6xDmrYnOrwaD53aweX4H27Cd30l7fVbVWWM/dJKfXYCTgJXAAdOtuHmUx9nATVX1zq5Fq4CxnpsnABd1lb+y6f15KLCxuUT6OeDwJHs2PUQPb8okSZIG2pT3qDU9Lv8YOJ7Ojf8Hb0Nvy2cDrwDWJPl6U/Ym4EzggiQnA98FXt4suxQ4ElgL/IROUkhV3ZnkrcA1Tb2/HOtYIEmSNMimukftHcBL6LSmLa6qTduy4qr6CpBJFj9vgvoFnDLJus4BztmW7UuSJM13Uz3w9jTgccCbgf9Kcnfzc0+Su2cnPEmSpOE1aYtaVW3TqAVqp0UTdG5Yd+ZRcxCJJEnaViZjkiRJLWWiJkmS1FImapIkSS1loiZJktRSJmqSJEktZaImSZLUUiZqkiRJLWWiJkmS1FImapIkSS1loiZJktRSkw4hpcHlsFKSJM0PtqhJkiS1lImaJElSS5moSZIktZT3qO2ANRs2cuIE93tJkiTNBFvUJEmSWspETZIkqaVM1CRJklrKRE2SJKmlTNQkSZJaykRNkiSppXw8hwCHlZIkqY1sUZMkSWopEzVJkqSWMlGTJElqKRM1SZKkljJRkyRJaikTNUmSpJby8RyalI/skCRpbtmiJkmS1FImapIkSS3V10QtyTlJ7khyQ1fZY5JcluSW5veeTXmSvDfJ2iTXJzm46zUnNPVvSXJCP2OWJElqi363qH0EOGJc2XLg8qo6ELi8mQd4IXBg87MM+CB0EjvgDOAZwCHAGWPJnSRJ0iDra6JWVV8C7hxXfAxwbjN9LvCirvKPVseVwB5J9gFeAFxWVXdW1V3AZWyd/EmSJA2cubhHbaSqbmumvw+MNNMLge911VvflE1WLkmSNNDm9PEcVVVJaqbWl2QZncumjIyMMDo6OlOrntDILnDa4s193Ubb9PuYtsmmTZuGan+Hied2sHl+B9uwnd+5SNRuT7JPVd3WXNq8oynfAOzXVW/fpmwDsHRc+ehEK66qFcAKgCVLltTSpUsnqjZj3nfeRZy1ZsgeRbfm3q2KBvXZaqOjo/T7PaS54bkdbJ7fwTZs53cuLn2uAsZ6bp4AXNRV/sqm9+ehwMbmEunngMOT7Nl0Iji8KZMkSRpofW0OSnI+ndawvZKsp9N780zggiQnA98FXt5UvxQ4ElgL/AQ4CaCq7kzyVuCapt5fVtX4DgqSJEkDp6+JWlUdN8mi501Qt4BTJlnPOcA5MxiaJElS6zkygSRJUkuZqEmSJLWUiZokSVJLmahJkiS1lImaJElSS5moSZIktZSJmiRJUkuZqEmSJLWUiZokSVJLDdmI4uqHRcsv2apsUAdqlyRpNtmiJkmS1FImapIkSS1loiZJktRSJmqSJEktZWcC9YUdDCRJ2nG2qEmSJLWUiZokSVJLmahJkiS1lImaJElSS9mZQLPGDgaSJG0bW9QkSZJayhY1zSlb2SRJmpwtapIkSS1loiZJktRSXvpU63g5VJKkDlvUJEmSWspETZIkqaW89Kl5wcuhkqRhZKKmecvkTZI06EzUNFBM3iRJg8RETQNvouQNTOAkSe1nZwJJkqSWmjctakmOAN4D7AR8uKrOnOOQNM95mVSS1HbzIlFLshPwd8DzgfXANUlWVdU35zYyDZru5O20xZs5cZLLphMxyZMkzbR5kagBhwBrq+pWgCQrgWMAEzW1xmT3wvXCJE+SNJH5kqgtBL7XNb8eeMYcxSLNuB1J8iYyUeLnpV5Jmn/mS6LWkyTLgGXN7KYkN/d5k3sBP+zzNjRHXj+Pz2/ePrP1BtC8Pbfqied3sA3q+f3liQrnS6K2Adiva37fpmwLVbUCWDFbQSW5tqqWzNb2NLs8v4PLczvYPL+DbdjO73x5PMc1wIFJ9k/yCOBYYNUcxyRJktRX86JFrao2J3kt8Dk6j+c4p6punOOwJEmS+mpeJGoAVXUpcOlcxzHOrF1m1Zzw/A4uz+1g8/wOtqE6v6mquY5BkiRJE5gv96hJkiQNHRO17ZDkiCQ3J1mbZPlcx6PeJNkvyReTfDPJjUlObcofk+SyJLc0v/dsypPkvc15vj7JwV3rOqGpf0uSE+Zqn7SlJDsluS7Jxc38/kmuas7hJ5rOSCR5ZDO/tlm+qGsdpzflNyd5wRztisZJskeSC5N8K8lNSZ7pZ3dwJPmj5u/yDUnOT/IoP78dJmrbqGs4qxcCTwKOS/KkuY1KPdoMnFZVTwIOBU5pzt1y4PKqOhC4vJmHzjk+sPlZBnwQOokdcAadhy4fApwx9gWhOXcqcFPX/NuBd1XVE4C7gJOb8pOBu5rydzX1aN4PxwJPBo4APtB85jX33gP8a1X9KvBUOufZz+4ASLIQeD2wpKqeQqfT4LH4+QVM1LbHg8NZVdXPgbHhrNRyVXVbVX2tmb6Hzh/6hXTO37lNtXOBFzXTxwAfrY4rgT2S7AO8ALisqu6sqruAy+j8UdAcSrIvcBTw4WY+wHOBC5sq48/t2Dm/EHheU/8YYGVV3VdV3wHW0vnMaw4l2R14DnA2QFX9vKp+jJ/dQbIzsEuSnYFfAG7Dzy9gorY9JhrOauEcxaLt1DSVPw24ChipqtuaRd8HRprpyc6174F2ejfwp8ADzfxjgR9X1eZmvvs8PXgOm+Ubm/qe23baH/gB8I/Npe0PJ9kVP7sDoao2AH8L/CedBG0jsBo/v4CJmoZQkgXAJ4E3VNXd3cuq0w3artDzTJLfBe6oqtVzHYv6YmfgYOCDVfU04F4euswJ+Nmdz5rLz8fQScgfB+yKLZ0PMlHbdj0NZ6V2SvJwOknaeVX1qab49uayCM3vO5ryyc6174H2eTZwdJJ1dG5HeC6de5r2aC6lwJbn6cFz2CzfHfgRntu2Wg+sr6qrmvkL6SRufnYHw+8A36mqH1TVfwOfovOZ9vOLidr2cDireaq5h+Fs4KaqemfXolXAWO+vE4CLuspf2fQgOxTY2Fxm+RxweJI9m/8ED2/KNEeq6vSq2reqFtH5TH6hqo4Hvgi8tKk2/tyOnfOXNvWrKT+26VW2P52b0a+epd3QJKrq+8D3kvxKU/Q84Jv42R0U/wkcmuQXmr/TY+fXzy/zaGSCtnA4q3nt2cArgDVJvt6UvQk4E7ggycnAd4GXN8suBY6kc0PqT4CTAKrqziRvpZO0A/xlVd05K3ugbfVGYGWS/wNcR3MzevP7Y0nWAnfSSe6oqhuTXEDnS2IzcEpV3T/7YWsCrwPOa/5BvpXO5/Fh+Nmd96rqqiQXAl+j87m7js7oA5fg59eRCSRJktrKS5+SJEktZaImSZLUUiZqkiRJLWWiJkmS1FImapIkSS1loiZpWkkqyVld83+S5C9maN0fSfLS6Wvu8HZeluSmJF8cV/7pJC/qmr85yZu75j+Z5CXbuc0Tk7y/x7qPax5RsK3b2CvJfyd5zTT13pDkF7rmL02yxxT1/yLJn2xrPJJmlomapF7cB7wkyV5zHUi3rqeW9+Jk4A+q6rBx5f8OPKtZ32PpDE/0zK7lzwS+2mM8O21DPFuoqv+qqu1JWF8GXAkcN01cb6Az2PXY9o5sBjaX1GImapJ6sZnOAyj/aPyC8S1iSTY1v5cmuSLJRUluTXJmkuOTXJ1kTZLHd63md5Jcm+T/NuN2kmSnJO9Ick2S65O8umu9X06yis6DLcfHc1yz/huSvL0pewvwm8DZSd4x7iVfpUnUmt//AuzdPNV+f+CnVfX9idY7tr9JzkryDeCZSU5q9uNqOg9ZHqv3sua130jypQniXpTkhmb6xCSfSvKvSW5J8jcTnxagk6CdBixMsu8kcf0ZnTEUvzjWophk3VjineSVzTH+RpKPTRDb45tYVjfH/leniEfSDHJkAkm9+jvg+mmShvGeCvwanaeH3wp8uKoOSXIqnSfNv6Gptwg4BHg8nWTiCcAr6Qz98xtJHgn8e5LPN/UPBp5SVd/p3liSxwFvB54O3AV8PsmLquovkzwX+JOqunZcjKuBpzRPvH8WcAVwQBP304CvTrHez9AZQPqqqjotnfEmP97U20hnCJzrmu28BXhBVW2Y6pJjl4Oa7d8H3JzkfVX1vXH7ux+wT1Vd3TyR/feBsUvUD8bV1H0VcFhV/XDcOp4MvBl4VlX9MMljJohlBfCaqrolyTOAD9AZT1VSn9miJqknVXU38FHg9dvwsmuq6raqug/4NjCWaK2hk5yNuaCqHqiqW+gkdL9KZxzGV6Yz3NdVwGPpjN0HcPX4JK3xG8BoM7jzZuA84DnT7Nd9wI10kr9Dm239B52k7Vl0Lo1Otd77gU8208/oqvdz4BNdm/p34CNJ/oDO8HPTubyqNlbVz+i0HP7yBHV+H7igmV7Jlpc/u+OaynOBfx5L4MYPqZRkAZ3j8M/Nufh7YJ8e1itpBtiiJmlbvJvOeHz/2FW2meafviQPAx7Rtey+rukHuuYfYMu/P+PHsisgwOuqaotBs5MspXMf2Uz6dzqJ125VdVeSK4HX0mnR+ntg/yle+7NexhOsqtc0rVFHAauTPL2qfjTFS7qP3f1M/Pf6OOB/JDm+mX9ckgObhLenuHrwMODHVXXQDKxL0jayRU1Sz5rWlgvo3Jg/Zh2dS30ARwMP345VvyzJw5r71g4AbgY+B/zvJA8HSPLEJLtOs56rgd9uekLuRCeRuaKH7X8VeDXwjWb+ejqta78E3LAN672qqffYJu6XjS1I8viquqqq3gL8ANivh7gmleSJwIKqWlhVi6pqEfDXTN6p4B5gtwnKv0Dn+D+2We8Wlz6bltTvJHlZszxJnrojsUvqnYmapG11FtDd+/Mf6CQn36DTQ3J7Wrv+k04y9Fk690L9DPgwnUt+X2tusv97prkKUFW3Acvp3Bv2DWB1VV3Uw/a/SidB/I9mPZuBO4Brm0uyPa23qfcXzXr+Hbipa/E7xjojNNv7xvjXb6PjgE+PK/skkydqK4B/zbjHk1TVjcDbgCuac/jOCV57PHBys/xG4JgdCVxS71I1/oqDJEmS2sAWNUmSpJYyUZMkSWopEzVJkqSWMlGTJElqKRM1SZKkljJRkyRJaikTNUmSpJYyUZMkSWopEzVJkqSWMlGTJElqKRM1SZKkljJRkyRJaikTNUmSpJYyUZMkSWopEzVJkqSWMlGTJElqKRM1SZKkljJRkyRJaikTNUmSpJYyUZMkSWqpnec6gH7Za6+9atGiRX3dxr333suuu+7a12203bAfg2Hff/AYDPv+g8dg2PcfPAYzsf+rV6/+YVXtPb58YBO1RYsWce211/Z1G6OjoyxdurSv22i7YT8Gw77/4DEY9v0Hj8Gw7z94DGZi/5N8d6JyL31KkiS1lImaJElSS5moSZIktZSJmiRJUkuZqEmSJLWUiZokSVJLmahJkiS1lImaJElSS5moSZIktdTAjkwgSeqfRcsveXD6tMWbOXH5Jaw786g5jEgaTLaoSZIktZSJmiRJUkuZqEmSJLWUiZokSVJL2ZlAkjQjujsYjLGDgbRjbFGTJElqKRM1SZKkljJRkyRJaikTNUmSpJayM4EkaVITdRCQNHtsUZMkSWopEzVJkqSWMlGTJElqqb4laknOSXJHkhu6yj6R5OvNz7okX2/KFyX5adeyD3W95ulJ1iRZm+S9SdKvmCVJktqkn50JPgK8H/joWEFV/f7YdJKzgI1d9b9dVQdNsJ4PAn8AXAVcChwBfHbmw5UkSWqXvrWoVdWXgDsnWta0ir0cOH+qdSTZB3h0VV1ZVUUn6XvRDIcqSZLUSnN1j9pvAbdX1S1dZfsnuS7JFUl+qylbCKzvqrO+KZMkSRp46TRU9WnlySLg4qp6yrjyDwJrq+qsZv6RwIKq+lGSpwOfAZ4MPBE4s6p+p6n3W8Abq+p3J9neMmAZwMjIyNNXrlzZl/0as2nTJhYsWNDXbbTdsB+DYd9/8BgM+v6v2bBx2joju8DtP5142eKFu89wRO0z6O+BXgz7MZiJ/T/ssMNWV9WS8eWz/sDbJDsDLwGePlZWVfcB9zXTq5N8m06StgHYt+vl+zZlE6qqFcAKgCVLltTSpUtnOvwtjI6O0u9ttN2wH4Nh33/wGAz6/p/YwwNvT1u8mbPWTPJ1suberYrWnXnUjobVKoP+HujFsB+Dfu7/XFz6/B3gW1X14CXNJHsn2amZPgA4ELi1qm4D7k5yaHNf2yuBi+YgZkmSpFnXz8dznA/8B/ArSdYnOblZdCxbdyJ4DnB987iOC4HXVNVYR4Q/BD4MrAW+jT0+JUnSkOjbpc+qOm6S8hMnKPsk8MlJ6l8LPGWiZZIkSYPMkQkkSZJaatY7E0iShtuiCTooDFoHA2mmmKhJklrJhE7y0qckSVJr2aImSZo3bGXTsLFFTZIkqaVsUZMkzbmJWsok2aImSZLUWiZqkiRJLWWiJkmS1FImapIkSS1loiZJktRSJmqSJEktZaImSZLUUj5HTZIE+CwzqY1M1CRJ85rDSmmQeelTkiSppUzUJEmSWspETZIkqaVM1CRJklrKRE2SJKmlTNQkSZJaykRNkiSppfqWqCU5J8kdSW7oKvuLJBuSfL35ObJr2elJ1ia5OckLusqPaMrWJlner3glSZLapp8PvP0I8H7go+PK31VVf9tdkORJwLHAk4HHAf+W5InN4r8Dng+sB65JsqqqvtnHuCVJ85wPwdWg6FuiVlVfSrKox+rHACur6j7gO0nWAoc0y9ZW1a0ASVY2dU3UJEnSwJuLe9Rem+T65tLonk3ZQuB7XXXWN2WTlUuSJA28VFX/Vt5pUbu4qp7SzI8APwQKeCuwT1W9Ksn7gSur6p+aemcDn21Wc0RV/a+m/BXAM6rqtZNsbxmwDGBkZOTpK1eu7Nu+AWzatIkFCxb0dRttN+zHYNj3HzwGg7T/azZs3K7XjewCt/90hoPpg8ULd+/LegfpPbC9hv0YzMT+H3bYYaurasn48lkdlL2qbh+bTvIPwMXN7AZgv66q+zZlTFE+0fpXACsAlixZUkuXLt3xoKcwOjpKv7fRdsN+DIZ9/8FjMEj7f+IE93X14rTFmzlrzax+nWyXdccv7ct6B+k9sL2G/Rj0c/9n9dJnkn26Zl8MjPUIXQUcm+SRSfYHDgSuBq4BDkyyf5JH0OlwsGo2Y5YkSZorffsXKMn5wFJgryTrgTOApUkOonPpcx3waoCqujHJBXQ6CWwGTqmq+5v1vBb4HLATcE5V3divmCVJktqkn70+j5ug+Owp6r8NeNsE5ZcCl85gaJIkSfOCIxNIkiS1lImaJElSS5moSZIktVT7+1NLktQnDjWltjNRk6QhNFGCMuiGcZ81/3npU5IkqaVM1CRJklrKRE2SJKmlTNQkSZJaykRNkiSppUzUJEmSWspETZIkqaWmTdSSnJrk0ek4O8nXkhw+G8FJkiQNs15a1F5VVXcDhwN7Aq8AzuxrVJIkSeopUUvz+0jgY1V1Y1eZJEmS+qSXRG11ks/TSdQ+l2Q34IH+hiVJkqRexvo8GTgIuLWqfpLkscBJfY1KkjRjHONSmr96aVEr4EnA65v5XYFH9S0iSZIkAb0lah8Angkc18zfA/xd3yKSJEkS0Nulz2dU1cFJrgOoqruSPKLPcUmSJA29XlrU/jvJTnQugZJkb+xMIEmS1He9JGrvBT4N/GKStwFfAf6qr1FJkiRp+kufVXVektXA8+g8P+1FVXXTdK9Lcg7wu8AdVfWUpuwdwO8BPwe+DZxUVT9Osgi4Cbi5efmVVfWa5jVPBz4C7AJcCpxaVbUtOylJUq967SW77syj+hyJNEWLWpLHjP0AdwDnAx8Hbm/KpvMR4IhxZZcBT6mqXwf+L3B617JvV9VBzc9ruso/CPwBcGDzM36dkiRJA2mqFrXVdO5LGxuFYKwVK830AVOtuKq+1LSUdZd9vmv2SuClU60jyT7Ao6vqymb+o8CLgM9O9TpJkqRBMGmiVlX793nbrwI+0TW/f9Oz9G7gzVX1ZWAhsL6rzvqmTJIkaeBlutu9krwY+EJVbWzm9wCWVtVnpl15p0Xt4rF71LrK/wxYArykqirJI4EFVfWj5p60zwBPBp4InFlVv9O87reAN1bV706yvWXAMoCRkZGnr1y5croQd8imTZtYsGBBX7fRdsN+DIZ9/8FjMB/2f82GjX1d/8gucPtP+7qJVlq8cHdgfrwH+m3Yj8FM7P9hhx22uqqWjC/v5TlqZ1TVp8dmmpv/z6CTTG2zJCfS6WTwvLFOAVV1H3BfM706ybfpJGkbgH27Xr5vUzahqloBrABYsmRJLV26dHtC7Nno6Cj93kbbDfsxGPb9B4/BfNj/E/s8hNRpizdz1ppevk4Gy7rjlwLz4z3Qb8N+DPq5/708nmOiOtv1iUxyBPCnwNFV9ZOu8r2bZ7WR5AA6nQZurarbgLuTHJokwCuBi7Zn25IkSfNNL4natUnemeTxzc876XQ0mFKS84H/AH4lyfokJwPvB3YDLkvy9SQfaqo/B7g+ydeBC4HXVNWdzbI/BD4MrKXzSA87EkiSpKHQS8vY64A/56Eb/y8DTpnuRVV13ATFZ09S95PAJydZdi3wlImWSZIkDbJeHnh7L7B8FmKRJElSl0kTtSTvrqo3JPkXHnqG2oOq6ui+RiZJkjTkpmpR+1jz+29nIxBJkiRtaaoH3o51GDioqt7TvSzJqcAV/QxsPlizYeNW3d4d+02SJM2UXnp9njBB2YkzHIckSZLGmeoeteOA/wkckGRV16LdgDsnfpUkSZJmylT3qH0VuA3YCzirq/we4Pp+BiVJ2j6L+jwKgaTZNdU9at9Nsh74WVUN/f1okiR1G0uKT1u8eYv7lb1XWTNpynvUqup+4IEku89SPJIkSWr0MjLBJmBNksuAe8cKq+r1fYtKkiRJPSVqn2p+um31AFxJkiTNrF6GkDq3ez7JfsCxfYtIkiRJQG/PUSPJ3kn+MMmXgVFgpK9RSZIkacrnqO0GvITOs9SeSOfy5/5Vte8sxSZJkjTUprr0eQdwNfBm4CtVVUlePDthSZIkaapLn6cDjwQ+AJye5PGzE5IkSZJgikStqt5dVYcCxzRFnwEel+SNSZ44G8FJkiQNs2k7E1TVrVX1V1W1GFgCPBq4tO+RSZIkDbmeen2OqaobqurPquoJ/QpIkiRJHduUqEmSJGn2mKhJkiS11KSJWpLLm99vn71wJEmSNGaqFrV9kjwLODrJ05Ic3P3Ty8qTnJPkjiQ3dJU9JsllSW5pfu/ZlCfJe5OsTXJ99zaSnNDUvyXJCdu7s5IkSfPJVA+8fQvw58C+wDvHLSvguT2s/yPA+4GPdpUtBy6vqjOTLG/m3wi8EDiw+XkG8EHgGUkeA5xBp8dpAauTrKqqu3rYviRJ0rw1aaJWVRcCFyb586p66/asvKq+lGTRuOJjgKXN9Ll0xg59Y1P+0aoq4MokeyTZp6l7WVXdCZDkMuAI4PztiUmSJGm+mKpFDYCqemuSo4HnNEWjVXXxDmxzpKpua6a/z0MDvC8EvtdVb31TNlm5JEnSQEunAWuKCslfA4cA5zVFxwHXVNWbetpAp0Xt4qp6SjP/46rao2v5XVW1Z5KLgTOr6itN+eV0WtqWAo+qqv/TlP858NOq+tsJtrUMWAYwMjLy9JUrV/YS4na7486N3P7TLcsWL9y9r9tsm02bNrFgwYK5DmPODPv+g8egbfu/ZsPGWd/myC5s9bdwmIzf/2H7HoD2fQ5m20zs/2GHHba6qpaML5+2RQ04Cjioqh4ASHIucB3QU6I2gduT7FNVtzWXNu9oyjcA+3XV27cp28BDl0rHykcnWnFVrQBWACxZsqSWLl06UbUZ877zLuKsNVsewnXH93ebbTM6Okq/j3ObDfv+g8egbft/4vJLZn2bpy3evNXfwmEyfv+H7XsA2vc5mG393P9en6O2R9f0jv6rsAoY67l5AnBRV/krm96fhwIbm0uknwMOT7Jn00P08KZMkiRpoPXyL9BfA9cl+SIQOveqLe9l5UnOp9MatleS9XR6b54JXJDkZOC7wMub6pcCRwJrgZ8AJwFU1Z1J3gpc09T7y7GOBZI0zBbNQeuZpNnVS2eC85OMAr/RFL2xqr7fy8qr6rhJFj1vgroFnDLJes4Bzullm5IkSYOip5sKmkuQq/ociyRJkro41qckSVJLmahJkiS11JSJWpKdknxrtoKRJEnSQ6a8R62q7k9yc5Jfqqr/nK2gJEmarybqjbvuzKPmIBINgl46E+wJ3JjkauDescKqOrpvUUmSJKmnRO3P+x6FJEmSttLLc9SuSPLLwIFV9W9JfgHYqf+hSZIkDbdpe30m+QPgQuDvm6KFwGf6GJMkSZLo7fEcpwDPBu4GqKpbgF/sZ1CSJEnqLVG7r6p+PjaTZGeg+heSJEmSoLdE7YokbwJ2SfJ84J+Bf+lvWJIkSeql1+dy4GRgDfBq4FLgw/0MSpK0pYmezSVp8PXS6/OBJOcCV9G55HlzVXnpU5Ikqc+mTdSSHAV8CPg2EGD/JK+uqs/2OzhJkqRh1sulz7OAw6pqLUCSxwOXACZqkiRJfdRLZ4J7xpK0xq3APX2KR5IkSY1JW9SSvKSZvDbJpcAFdO5RexlwzSzEJkmSNNSmuvT5e13TtwO/3Uz/ANilbxFJkiQJmCJRq6qTZjMQSZIkbamXXp/7A68DFnXXr6qj+xeWJEmSeun1+RngbDqjETzQ12gkSZL0oF4StZ9V1XtnaoNJfgX4RFfRAcBbgD2AP6BzDxzAm6rq0uY1p9MZHeF+4PVV9bmZikeSJKmteknU3pPkDODzwH1jhVX1te3ZYFXdDBwEkGQnYAPwaeAk4F1V9bfd9ZM8CTgWeDLwOODfkjyxqu7fnu1LkiTNF70kaouBVwDP5aFLn9XM76jnAd+uqu8mmazOMcDKqroP+E6StcAhwH/MwPYlSZJaq5dE7WXAAVX18z5s/1jg/K751yZ5JXAtcFpV3QUsBK7sqrO+KZMkSRpomW589SSfAZZV1R0zuuHkEcB/AU+uqtuTjAA/pNNa91Zgn6p6VZL3A1dW1T81rzsb+GxVXTjBOpcBywBGRkaevnLlypkMeSt33LmR23+6Zdnihbv3dZtts2nTJhYsWDDXYcyZYd9/8BjM1v6v2bCx79vYXiO7sNXfwmHSy/4P+neDfwd2fP8PO+yw1VW1ZHx5Ly1qewDfSnINW96jtqOP53gh8LWqur1Z3+1jC5L8A3BxM7sB2K/rdfs2ZVupqhXACoAlS5bU0qVLdzDEqb3vvIs4a82Wh3Dd8f3dZtuMjo7S7+PcZsO+/+AxmK39P3H5JX3fxvY6bfHmrf4WDpOe9n/NvVsVrTvzqD5FNPv8O9C//e/lk3VGX7YMx9F12TPJPlV1WzP7YuCGZnoV8PEk76TTmeBA4Oo+xSRJktQa0yZqVXXFTG80ya7A84FXdxX/TZKD6Fz6XDe2rKpuTHIB8E1gM3CKPT4lSdIw6GVkgnvoJE8AjwAeDtxbVY/e3o1W1b3AY8eVvWKK+m8D3ra925Ok+WRRiy9zSppdvbSo7TY2nc4zNI4BDu1nUJIkSYKHbUvl6vgM8IL+hCNJkqQxvVz6fEnX7MOAJcDP+haRJEmSgN56ff5e1/RmOjf6H9OXaCRJkvSgXu5RO2k2ApEkSdKWJk3UkrxlitdVVb21D/FIkiSpMVWL2taPUYZdgZPpPFrDRE2SJKmPJk3UquqssekkuwGnAicBK4GzJnudJEmSZsaU96gleQzwx8DxwLnAwVV112wEJkmSNOymukftHcBL6AxyvriqNs1aVJIkSZrygben0RkE/c3AfyW5u/m5J8ndsxOeJEnS8JrqHrVtGrVAkiRJM8tkTJIkqaVM1CRJklrKRE2SJKmlehnrU5IkzbBFyy/ZqmzdmUfNQSRqM1vUJEmSWsoWNUmaQxO1qkjSGFvUJEmSWspETZIkqaVM1CRJklrKRE2SJKml5ixRS7IuyZokX09ybVP2mCSXJbml+b1nU54k702yNsn1SQ6eq7glSZJmy1y3qB1WVQdV1ZJmfjlweVUdCFzezAO8EDiw+VkGfHDWI5UkSZplc52ojXcMcG4zfS7woq7yj1bHlcAeSfaZg/gkSZJmzVwmagV8PsnqJMuaspGquq2Z/j4w0kwvBL7X9dr1TZkkSdLASlXNzYaThVW1IckvApcBrwNWVdUeXXXuqqo9k1wMnFlVX2nKLwfeWFXXjlvnMjqXRhkZGXn6ypUr+7oPd9y5kdt/umXZ4oW793WbbbNp0yYWLFgw12HMmWHff/AY7Oj+r9mwcQajmRsju7DV38JhMpP7P1+/Q/w7sOP7f9hhh63uuhXsQXM2MkFVbWh+35Hk08AhwO1J9qmq25pLm3c01TcA+3W9fN+mbPw6VwArAJYsWVJLly7t4x7A+867iLPWbHkI1x3f3222zejoKP0+zm027PsPHoMd3f8TB2BkgtMWb97qb+Ewmcn9n6/fIf4d6N/+z8mlzyS7JtltbBo4HLgBWAWc0FQ7AbiomV4FvLLp/XkosLHrEqkkSdJAmqt/gUaATycZi+HjVfWvSa4BLkhyMvBd4OVN/UuBI4G1wE+Ak2Y/ZEmSpNk1J4laVd0KPHWC8h8Bz5ugvIBTZiE0SZLmzKIJLoWvO/OoOYhEbdG2x3NIkiSpYaImSZLUUiZqkiRJLTW8/aklaZZNdP+RJE3FFjVJkqSWMlGTJElqKRM1SZKkljJRkyRJaik7E0hSH9hxQNJMsEVNkiSppWxRkySpxRxWarjZoiZJktRSJmqSJEktZaImSZLUUiZqkiRJLWWiJkmS1FImapIkSS3l4zkkSZpnfGTH8DBRk6Qd5CgEkvrFS5+SJEktZaImSZLUUiZqkiRJLTXriVqS/ZJ8Mck3k9yY5NSm/C+SbEjy9ebnyK7XnJ5kbZKbk7xgtmOWJEmaC3PRmWAzcFpVfS3JbsDqJJc1y95VVX/bXTnJk4BjgScDjwP+LckTq+r+WY1akiRpls16i1pV3VZVX2um7wFuAhZO8ZJjgJVVdV9VfQdYCxzS/0glSZLm1pzeo5ZkEfA04Kqm6LVJrk9yTpI9m7KFwPe6XraeqRM7SZKkgZCqmpsNJwuAK4C3VdWnkowAPwQKeCuwT1W9Ksn7gSur6p+a150NfLaqLpxgncuAZQAjIyNPX7lyZV/34Y47N3L7T7csW7xw975us202bdrEggUL5jqMOTPs+w8eg02bNvGdjcN9J8bILmz1t3CYtGX/5/L7x78DO77/hx122OqqWjK+fE4eeJvk4cAngfOq6lMAVXV71/J/AC5uZjcA+3W9fN+mbCtVtQJYAbBkyZJaunTpjMfe7X3nXcRZa7Y8hOuO7+8222Z0dJR+H+c2G/b9B4/B6OgoZ33l3rkOY06dtnjzVn8Lh0lr9n/N1u/D2RqtwL8D/dv/uej1GeBs4KaqemdX+T5d1V4M3NBMrwKOTfLIJPsDBwJXz1a8kiRJc2Uu/gV4NvAKYE2SrzdlbwKOS3IQnUuf64BXA1TVjUkuAL5Jp8foKfb4lCRJw2DWE7Wq+gqQCRZdOsVr3ga8rW9BSZIktZAjE0iSJLVUC+5+lKT5Y9HyS7aYP23xZvxTKqlfbFGTJElqKf8NlCRpQI1vAYbZe2SHZoYtapIkSS1loiZJktRSJmqSJEkt5T1qkiQNEe9bm19M1CRpEhN9oUnSbPLSpyRJUkuZqEmSJLWUiZokSVJLeY+apKHnvWiS2spETZKkIWdP0Pby0qckSVJLmahJkiS1lImaJElSS3mPmiRJ2or3rbWDLWqSJEktZaImSZLUUl76lDRUfGaatP28HDr7TNQkDSyTMknz3bxJ1JIcAbwH2An4cFWdOcchSZoj/lcvtcei5Zdw2uLNnNj1ufTzOHPmRaKWZCfg74DnA+uBa5Ksqqpvzm1kktrC1jOpPSb7PJrAbbt5kagBhwBrq+pWgCQrgWMAEzVpnjKxkoZPr597E7qHzJdEbSHwva759cAz5igWaeBtSxI1/pKHJO2oXm9v2JF6E2ljgpiqmusYppXkpcARVfW/mvlXAM+oqteOq7cMWNbM/gpwc59D2wv4YZ+30XbDfgyGff/BYzDs+w8eg2Hff/AYzMT+/3JV7T2+cL60qG0A9uua37cp20JVrQBWzFZQSa6tqiWztb02GvZjMOz7Dx6DYd9/8BgM+/6Dx6Cf+z9fHnh7DXBgkv2TPAI4Flg1xzFJkiT11bxoUauqzUleC3yOzuM5zqmqG+c4LEmSpL6aF4kaQFVdClw613GMM2uXWVts2I/BsO8/eAyGff/BYzDs+w8eg77t/7zoTCBJkjSM5ss9apIkSUPHRK0HSY5IcnOStUmWT7D8kUk+0Sy/KsmiOQizb3rY/xOT/CDJ15uf/zUXcfZLknOS3JHkhkmWJ8l7m+NzfZKDZzvGfuvhGCxNsrHrPfCW2Y6xn5Lsl+SLSb6Z5MYkp05QZ6DfBz0eg4F9HyR5VJKrk3yj2f//b4I6g/5d0MsxGOjvA+iMlpTkuiQXT7Bs5t8DVeXPFD90Oi98GzgAeATwDeBJ4+r8IfChZvpY4BNzHfcs7/+JwPvnOtY+HoPnAAcDN0yy/Ejgs0CAQ4Gr5jrmOTgGS4GL5zrOPu7/PsDBzfRuwP+d4HMw0O+DHo/BwL4PmvO6oJl+OHAVcOi4OgP7XbANx2Cgvw+affxj4OMTvdf78R6wRW16Dw5fVVU/B8aGr+p2DHBuM30h8LwkmcUY+6mX/R9oVfUl4M4pqhwDfLQ6rgT2SLLP7EQ3O3o4BgOtqm6rqq810/cAN9EZMaXbQL8PejwGA6s5r5ua2Yc3P+Nv8h7k74Jej8FAS7IvcBTw4UmqzPh7wERtehMNXzX+j9ODdapqM7AReOysRNd/vew/wP/TXO65MMl+EywfZL0eo0H3zOaSyGeTPHmug+mX5lLG0+i0JnQbmvfBFMcABvh90Fzy+jpwB3BZVU36HhjA7wKgp2MAg/198G7gT4EHJlk+4+8BEzXNhH8BFlXVrwOX8dB/ExoeX6Mz/MlTgfcBn5nbcPojyQLgk8AbquruuY5nLkxzDAb6fVBV91fVQXRGxzkkyVPmOKRZ18MxGNjvgyS/C9xRVatnc7smatPrZfiqB+sk2RnYHfjRrETXf9Puf1X9qKrua2Y/DDx9lmJri56GOBtkVXX32CWR6jzz8OFJ9prjsGZUkofTSVDOq6pPTVBl4N8H0x2DYXgfAFTVj4EvAkeMWzTI3wVbmOwYDPj3wbOBo5Oso3Mb0HOT/NO4OjP+HjBRm14vw1etAk5opl8KfKGaOwkHwLT7P+4+nKPp3LsyTFYBr2x6/R0KbKyq2+Y6qNmU5H+M3YeR5BA6f1sG5guq2bezgZuq6p2TVBvo90Evx2CQ3wdJ9k6yRzO9C/B84Fvjqg3yd0FPx2CQvw+q6vSq2reqFtH5LvxCVf2/46rN+Htg3oxMMFdqkuGrkvwlcG1VraLzx+tjSdbSueH62LmLeGb1uP+vT3I0sJnO/p84ZwH3QZLz6fRm2yvJeuAMOjfRUlUfojNixpHAWuAnwElzE2n/9HAMXgr87ySbgZ8Cxw7SFxSd/6RfAaxp7s8BeBPwSzA074NejsEgvw/2Ac5NshOdBPSCqrp4WL4LGr0cg4H+PphIv98DjkwgSZLUUl76lCRJaikTNUmSpJYyUZMkSWopEzVJkqSWMlGTJElqKRM1STskyabpa83Ytt6R5MYk7xhXfmKSB5L8elfZDc1QRzOx3VnZxyTnN0Pv/FFX2R5JftT1fLJnJqlmzEGS7J7kziTb9fc8yWiSJTOzB5Jmms9RkzSfLAMeU1X3T7BsPfBnwO/PbkhTS7JzM+bfdPX+B/AbVfWE7vKq+nGS24BfA74JPAu4rvl9AXAocHVVTTb24DbHIqk9bFGTNOOSHJTkyqZ16NNJ9mzKf6Mp+3rTOnbDBK/N2LIka5L8flO+ClgArB4rG+di4MlJfmWCdW7qmn5pko800x9J8sEm1luTLE1yTpKbxup0ve5dTWve5Un2bsoen+Rfk6xO8uUkv9q13g8luQr4m3HreVSSf2z27bokhzWLPg8sbI7Nb43bha/SScxofr9r3Py/T7beprVxVZIvAJcn2SXJymYfPw3s0tTbqYl77Lj/EZLmnImapH74KPDGZmDmNXRGMgD4R+DVzaDOE7WKAbwEOAh4KvA7wDuS7FNVRwM/raqDquoTE7zuATpJ0Zu2MdY9gWcCf0Rn+Jd3AU8GFic5qKmzK50njz8ZuKJrf1YAr6uqpwN/Anyga737As+qqj8et71TgKqqxcBxdJ70/ig6w+18u9m/L497zb/zUGJ2APDPwNjlymfRSeQmWy/AwcBLq+q3gf8N/KSqfq3Zj7GxGA8CFlbVU5p1/OPUh03SbDBRkzSjkuwO7FFVVzRF5wLPSWeMwN2q6j+a8o9PsorfBM6vqvur6nY6idFv9Lj5jwOHJtl/G0L+l2aYozXA7VW1prmMeCOwqKnzADCWHP4T8JtJFtBJkv65GVLp7+kMsTPmnye5RPubzTqoqm8B3wWeOE2MXwWe1ezXuqr6GZ3GxwV0Eq2rplnvZVV1ZzP9nK561wPXN+W3AgckeV+SI4C7p4lJ0izwHjVJA6MZm/Ys4I3jF3VNP2rcsvua3w90TY/NT/Y3suj8o/vjpnVwIvdOG3CPquqWJtH9PWAs0V1NZzzRdVW1qelrMJlpY6mqu5I8FXgB8Brg5cCrdiRuSTvOFjVJM6qqNgJ3dd1n9Qrgiqr6MXBPkmc05ZMNVvxl4Pebe6b2ptMCdPU2hPAROpdM9+4quz3JrzU9I1+8Desa8zA6A44D/E/gK1V1N/CdJC+DB++te2oP6/oycHzzmifSGdT85h5edyVwKg8lav8BvIHOZdFtWe+Xmn0gyVOAX2+m9wIeVlWfBN5M53KppDlmi5qkHfULSdZ3zb8TOAH4UJJfoHNJ7aRm2cnAPyR5gM4lzY0TrO/TdO4Z+wadlqs/rarv9xpMVf08yXuB93QVL6fT2eAHwLV0OiVsi3uBQ5K8GbiDh3qWHg98sCl/OLCyiXsqH2heswbYDJxYVfdN0yIGnYTsyCZ+6CRqB9C5LLot6/0g8I9JbgJuotMyB7CwKR/7B/706QKS1H/p3JohSf2XZEFVbWqmlwP7VNWpcxyWJLWWLWqSZtNRSU6n87fnu8CJcxuOJLWbLWqSJEktZWcCSZKkljJRkyRJaikTNUmSpJYyUZMkSWopEzVJkqSWMlGTJElqqf8f3YtYMnIYGiEAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# shift + 1 due to log(0)\n",
"news[\"log_n_tokens_content\"] = np.log10(news[\"n_tokens_content\"] + 1)\n",
"\n",
"fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10))\n",
"news[\"n_tokens_content\"].hist(ax=ax1, bins=100)\n",
"ax1.set_xlabel(\"Number of Words in Article\")\n",
"ax1.set_ylabel(\"Number of Articles\")\n",
"news[\"log_n_tokens_content\"].hist(ax=ax2, bins=100)\n",
"ax2.set_xlabel(\"Log of Number of Words\")\n",
"ax2.set_ylabel(\"Number of Articles\");"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "8dfed8b5-cf59-4186-8f22-39b0013bf844",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.38045297261832045"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# box-cox transform\n",
"# again, +1 as boxcox expects data to be positive\n",
"# log transform\n",
"news[\"n_tokens_content_lmbda0\"] = stats.boxcox(\n",
" news[\"n_tokens_content\"] + 1, lmbda=0\n",
")\n",
"\n",
"# as close to normal distribution as possible (optimal box-cox transform)\n",
"# If the lmbda parameter is None, the second returned argument\n",
"# is the lambda that maximizes the log-likelihood function.\n",
"values, lambda_param = stats.boxcox(news[\"n_tokens_content\"] + 1)\n",
"news[\"n_tokens_content_opt\"] = values\n",
"lambda_param"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "792ae313-f920-4ddd-8f2d-d5fd6921ba24",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAANeCAYAAAC8hxLDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABYuklEQVR4nO3df7xlZV33/9fbQRQYHU10vB3QwYZQhFQ8idh9dw9qCeqolSmEKUpMlpR1c6fgXWk/NCtNQ0HvSZAsYkTSYIDEn5PZ1wxHK0DkjhBlEBn54YFBFAY+3z/2Oro5c86cPTNnnXX23q/n47Efs9e1117rc62199mfua5rXStVhSRJkrrzgK4DkCRJGncmZJIkSR0zIZMkSeqYCZkkSVLHTMgkSZI6ZkImSZLUMRMySTstyZVJVg+wXiVZ1X5E7UhydpI/msftPTbJ1iRL5mubkkaDCZk0hpJsTHJbkgcNsO52SUlVPamqNrYY3/FJPtfW9tvYZ5KVTQK6x7TyHxy/qvpGVS2tqnvbjEXS8DEhk8ZMkpXA/wAKeOEc69qSM2LS499+aZHxSymNn1cA/wKcDbyy/4WmNee9SS5JcidwAnAc8Pqmq21Ds951SZ7TPF+S5I1J/ivJHUk2Jdl/+k6TPCjJ25N8I8lNSd6XZK+dDT7JE5J8IsmtSa5O8tJp8Z+e5OImli8k+dG+13+mec9kkjOS/GOSX07yROB9wBFNPb/Tt8uHz7a9XYj9fq1oTUvYtc22v5bkuNliSbIsyQeTfDvJ15P8zlRi1ZyDdyS5udnOSdP2szHJW5L8M/Bd4PFJXpXkqmbf1yb5lb44VyfZnOT1SbYkuTHJi5M8L8n/a479G3f1OEjangmZNH5eAZzTPJ6bZPm0138ReAvwEOCDzXp/2nS1rZlhe/8LOBZ4HvBQ4NX0fvSnexvwY8BTgFXACuD3dibwJPsAnwD+FngUcAxwRpKD+1Y7Bvh94OHANU1dSLIvcD5wKvAI4GrgmQBVdRXwGuDzTT0fNtf2dldTl9OAo6vqIU0s/7aDWN4NLAMeD/xPeufxVc1rJwJH0zu2hwEvnmGXvwSspXdevw5sAV5A75y9CnhnksP61n808GB+eJ7+Eng58DR6Lay/m+SA3TkGkn7IhEwaI0n+O/A44Lyq2gT8F70ErN8FVfXPVXVfVX1vgM3+MvA7VXV19fx7Vd0ybb+hlwz8VlXdWlV3AG+ll+zsjBcA11XVB6pqW1V9Gfg74Bf61vloVf1rVW2jl0w+pSl/HnBlVX2kee004FsD7HO27c3m5iTfmXqw/fHtdx9wSJK9qurGqrpyppWaruNjgFOr6o6qug54B70kC+ClwF9U1eaquo1e8jvd2VV1ZXPc7qmqi6vqv5pz9o/Ax+klWlPuAd5SVfcA64F9m33c0cT5FeDJcxwLSQMyIZPGyyuBj1fVzc3y3zKt2xK4fie3uT+9xG5HHgnsDWzqS1Q+1pTvjMcBh09LeI6j15ozpT/J+i6wtHn+GPrqVlUFbB5gn7Ntbzb7VtXDph70jvF2qupO4GX0WsNubLpFnzDbNoEH0mvZmvJ1eq1XMK1uzHwO71eW5Ogk/9J0P36HXsK6b98qt/RdfHBX8+9Nfa/fxdzHQtKA9ph7FUmjoBmv9VJgSZKpJONBwMOSPLmq/r0pq2lvnb483fXAjwJX7GCdm+n9gD+pqm7Yuci329c/VtVP78J7bwT2m1poWu3263t9rnrOu6q6FLi0OTd/RK9bcOqCi34302uxehy9limAxwJTx/J+daOXJG+3u6kn6V1d+3f0uj0vqKp7kvw9kN2pj6RdZwuZND5eDNwLHEyv2+0pwBOBf6L3wzybm+iNW5rN+4E/THJgen48ySP6V6iq++glG+9M8iiAJCuSPHcH202SB/c/gIuAH0vyS0ke2Dx+ohkIP5eLgUObwel7AK/l/i1rNwH7JdlzgG3ttiTLk7yoGUv2fWArvS7M7WJpWqrOA96S5CFJHkdv7N7fNOufB7yuOaYPA94wx+73pJeMfxvYluRo4Gfmr3aSdpYJmTQ+Xgl8oJkL61tTD+A9wHGZNn9WnzOBg5suwr+f4fU/p5cQfBy4vVl/pqsn30BvUPy/JLkd+CRw0A7ifSa9VrXpj5+hN57qm/S6E/+EXnKxQ0037S8AfwrcQi8x/SK9ZAjg08CVwLeS3DzjRubXA+glVd8EbqU3UP9XdxDLrwN3AtcCn6PXFXpW89pf0jv+/wF8GbgE2EYvAd9OM4bvN+idt9vojXO7cP6qJmlnpTeMQpLGSzNlxGbguKr6TNfxzKemxet9VfW4rmORNBhbyCSNjSTPTfKwZgzVG+mNmfqXjsPabUn2auYI2yPJCuBNwEe7jkvS4EzIJI2TI+hdEXozsAZ4cVXdteO3DIXQmyvtNnpdllexk3O8SeqWXZaSJEkds4VMkiSpY0M9D9m+++5bK1eubHUfd955J/vss0+r+1B3PL+jzfM72jy/o2tUz+2mTZturqoZJ8Qe6oRs5cqVfPGLX2x1Hxs3bmT16tWt7kPd8fyONs/vaPP8jq5RPbdJvj7ba3ZZSpIkdWwoE7Ika5Ksm5yc7DoUSZKk3TaUCVlVbaiqtcuWLes6FEmSpN02lAmZJEnSKBnKhMwuS0mSNEqGMiGzy1KSJI2SoUzIJEmSRokJmSRJUseGMiFzDJkkSRolQzlTf1VtADZMTEyc2HUsc1l5ysXblV33tud3EIkkSVqshjIhW6xmSr4kSZLmMpRdlpIkSaNkKBMyx5BJkqRRMpQJmfOQSZKkUTKUCZkkSdIoMSGTJEnqmFdZdsCpMCRJUj9byCRJkjo2lAmZV1lKkqRRMpQJmVdZSpKkUTKUCZkkSdIoMSGTJEnqmFdZ7oI27lnplZeSJI0vW8gkSZI6ZkImSZLUsaFMyJz2QpIkjZKhTMic9kKSJI0SB/UvYg70lyRpPAxlC5kkSdIoMSGTJEnqmAmZJElSx0zIJEmSOmZCJkmS1DGvshwyXnkpSdLosYVMkiSpYyZkkiRJHRvKhMxbJ0mSpFEylGPIqmoDsGFiYuLErmNZDBxXJknScBvKFjJJkqRRYkImSZLUMRMySZKkjg3lGDLNzXFlkiQND1vIJEmSOmYL2Rwuv2GS42dobZIkSZovtpBJkiR1zIRMkiSpY3ZZjhEH+kuStDjZQiZJktQxEzJJkqSO2WU55uzGlCSpe4umhSzJE5O8L8n5SX6163gkSZIWSqsJWZKzkmxJcsW08qOSXJ3kmiSnAFTVVVX1GuClwE+2GZckSdJi0nYL2dnAUf0FSZYApwNHAwcDxyY5uHnthcDFwCUtxyVJkrRopKra3UGyErioqg5plo8A3lxVz22WTwWoqj/ue8/FVTXjQKYka4G1AMuXL3/a+vXrW41/y62T3HRXq7tYdA5dsazrEBbM1q1bWbp0addhqCWe39Hm+R1do3pujzzyyE1VNTHTa10M6l8BXN+3vBk4PMlq4OeAB7GDFrKqWgesA5iYmKjVq1e3FScA7z7nAt5x+Zhd+3D5ndsVjepA/40bN9L2Z0jd8fyONs/v6BrHc7toMo2q2ghs7DgMSZKkBdfFVZY3APv3Le/XlA0syZok6yYnJ+c1MEmSpC50kZBdBhyY5IAkewLHABfuzAaqakNVrV22bHzGOkmSpNHV9rQX5wKfBw5KsjnJCVW1DTgJuBS4Cjivqq5sMw5JkqTFrNUxZFV17Czll7AbU1skWQOsWbVq1a5uQpIkadFYNDP17wy7LCVJ0igZyoRMkiRplAxlQuZVlpIkaZQsmnnIdkZVbQA2TExMnNh1LONi5SkXb1c2qpPFSpK00IayhUySJGmUmJBJkiR1bCgTMseQSZKkUTKUCZnTXkiSpFEylIP6tTg40F+SpPkxlC1kkiRJo8SETJIkqWNDmZA5qF+SJI2SoUzIHNQvSZJGyVAmZJIkSaPEhEySJKljTnuheTXTVBjgdBiSJO3IULaQOahfkiSNkqFMyBzUL0mSRslQJmSSJEmjxDFkWhDeZkmSpNnZQiZJktQxEzJJkqSOmZBJkiR1bCgTMqe9kCRJo2QoEzKnvZAkSaPEqyzVGa+8lCSpZyhbyCRJkkaJCZkkSVLHTMgkSZI6ZkImSZLUMQf1a1FxoL8kaRzZQiZJktQxEzJJkqSODdRlmSTAccDjq+oPkjwWeHRV/Wur0UnYjSlJGn2DtpCdARwBHNss3wGc3kpEA/DWSZIkaZQMmpAdXlWvBb4HUFW3AXu2FtUcvHWSJEkaJYMmZPckWQIUQJJHAve1FpUkSdIYGTQhOw34KPCoJG8BPge8tbWoJEmSxshAg/qr6pwkm4BnAwFeXFVXtRqZtAMO9JckjZJBr7J8BnBlVZ3eLD80yeFV9YVWo5MkSRoDg3ZZvhfY2re8tSmTJEnSbho0IUtV1dRCVd2Ht12SJEmaF4MmVdcm+Q1+2Cr2a8C17YQk7RrHlUmShtWgLWSvAZ4J3ABsBg4H1rYVlCRJ0jgZ9CrLLcAxLcciSZI0lga9yvKRwInAyv73VNWr2wlLkiRpfAw6huwC4J+ATwL3theOJEnS+Bk0Idu7qt7QaiSSJEljatBB/RcleV6rkQBJXpzkL5N8KMnPtL0/SZKkxWDQFrLXAW9McjdwN73bJ1VVPXSuNyY5C3gBsKWqDukrPwr4C2AJ8P6qeltV/T3w90keDrwd+PjOVEaazqkwJEnDYKAWsqp6SFU9oKoeXFUPbZbnTMYaZwNH9RckWQKcDhwNHAwcm+TgvlV+p3ldkiRp5KVvAv7ZV0oCHAccUFV/mGR/4L9V1b8OtJNkJXDRVAtZkiOAN1fVc5vlU5tV39Y8PlFVn5xlW2tp5kBbvnz509avXz9ICLtsy62T3HRXq7vQAjt0xbIfPN+6dStLly7tMBq1yfM72jy/o2tUz+2RRx65qaomZnpt0C7LM4D7gGcBf0jvXpanAz+xizGtAK7vW56abPbXgecAy5Ksqqr3TX9jVa0D1gFMTEzU6tWrdzGEwbz7nAt4x+XeJWqUXHfc6h8837hxI21/htQdz+9o8/yOrnE8t4NmGodX1WFJvgxQVbcl2XO+g6mq04DT5nu7kiRJi9mgCdk9zbivgh9MFHvfbuz3BmD/vuX9mrKBJFkDrFm1atVuhKBx1T/Q/+RDt3H8DAP/wcH/kqSFM+i0F6cBHwUeleQtwOeAt+7Gfi8DDkxyQNPSdgxw4aBvrqoNVbV22bJlc68sSZK0yM3ZQpbkAcDXgNcDz6Y35cWLq+qqQXaQ5FxgNbBvks3Am6rqzCQnAZfSm/birKq6cteqILXDKTMkSQtlzoSsqu5LcnpVPRX46s7uoKqOnaX8EuCSnd0e2GUpSZJGy6Bdlp9K8vPN9Beds8tSkiSNkkETsl8BPgx8P8ntSe5IcnuLcUmSJI2NOROyZgzZUc1M/Xvuwkz98y7JmiTrJicnuwpBkiRp3syZkFXVfcB7FiCWgdllKUmSRslQjiGTJEkaJY4hkyRJ6thAM/VX1UPaDmRnOO2FuuLcZJKkNgyUkCX5qZnKq+qz8xvOYKpqA7BhYmLixC72L0mSNJ8GvZflb/c9fzDwdGAT8Kx5j0iSJGnMDNpluaZ/Ocn+wLvaCEgaNnZjSpJ216AtZNNtBp44n4FIo2SmJA1M1CRJMxt0DNm7gWoWHwA8BfhSSzENEo+D+iVJ0sgYtIXsi33PtwHnVtU/txDPQBzUL0mSRsmgCdn5wPeq6l6AJEuS7F1V320vNEmSpPEw8Ez9wF59y3sBn5z/cCRJksbPoAnZg6tq69RC83zvdkKSJEkaL4MmZHcmOWxqIcnTgLvaCWluSdYkWTc5OdlVCJIkSfNm0ITsN4EPJ/mnJJ8DPgSc1FpUc6iqDVW1dtmyZV2FIEmSNG8GnRj2siRPAA5qiq6uqnvaC0saTU4iK0mayUAtZEleC+xTVVdU1RXA0iS/1m5okiRJ42HQaS9OrKrTpxaq6rYkJwJntBOWNN5sSZOk8TLoGLIlSTK1kGQJsGc7IUmSJI2XQVvILgU+lOT/NsuvAT7WTkiSJEnjZdCE7HeBE4GpcWOXAme2EpEkSdKY2WFClmQP4K3Aq4Drm+LHAtfS6+68t9XoZo/Lm4tLkqSRMdcYsj8DfgR4fFUdVlWHAQcAy4C3tx3cbJyHTJIkjZK5ErIX0LvC8o6pgub5rwLPazMwSZKkcTHXGLKqqpqh8N4k25VL2nkzTXEhSRovcyVkX0nyiqr6YH9hkpcDX20vLEnTOTeZJI2uuRKy1wIfSfJqYFNTNgHsBfxsm4FJkiSNix0mZFV1A3B4kmcBT2qKL6mqT7UemSRJ0pgY9ObinwY+3XIskiRJY2nQWydJkiSpJSZkkiRJHRv01kmLijP1S7PzakxJGj5D2ULmTP2SJGmUDGVCJkmSNEpMyCRJkjpmQiZJktSxoRzUL6nH+2BK0miwhUySJKljJmSSJEkdMyGTJEnqmAmZJElSx0zIJEmSOmZCJkmS1DETMkmSpI45D5k0BrzhuCQtboumhSzJ45OcmeT8rmORJElaSK0mZEnOSrIlyRXTyo9KcnWSa5KcAlBV11bVCW3GI0mStBi13UJ2NnBUf0GSJcDpwNHAwcCxSQ5uOQ5JkqRFK1XV7g6SlcBFVXVIs3wE8Oaqem6zfCpAVf1xs3x+Vb1kB9tbC6wFWL58+dPWr1/favxbbp3kprta3YU6tHwvPL9zOHTFsq5D2GVbt25l6dKlXYehlnh+R9eontsjjzxyU1VNzPRaF4P6VwDX9y1vBg5P8gjgLcBTk5w6laBNV1XrgHUAExMTtXr16laDffc5F/COy732YVSdfOg2z+8crjtuddch7LKNGzfS9t8IdcfzO7rG8dwuml+iqroFeE3XcUiSJC20LhKyG4D9+5b3a8oGlmQNsGbVqlXzGZekATmNhiTNry6mvbgMODDJAUn2BI4BLtyZDVTVhqpau2zZ8I5tkSRJmtL2tBfnAp8HDkqyOckJVbUNOAm4FLgKOK+qrmwzDkmSpMWs1S7Lqjp2lvJLgEt2dbt2WUqSpFGyaGbq3xl2WUqSpFEylAmZJEnSKFk0017sDLsspcWnjSsv53ubXh0qabEayhYyuywlSdIoGcqETJIkaZSYkEmSJHXMMWSSdmimcVfDvB9JWoyGsoXMMWSSJGmUDGVCJkmSNEpMyCRJkjpmQiZJktQxB/VLao0TsUrSYIayhcxB/ZIkaZQMZUImSZI0SkzIJEmSOmZCJkmS1LGhTMiSrEmybnJysutQJEmSdttQJmQO6pckSaNkKBMySZKkUWJCJkmS1DETMkmSpI6ZkEmSJHXMhEySJKljJmSSJEkd8+bikhbUTDccb+v9Jx+6jeN3c387G8s43jzd4yDtvqFsIXMeMkmSNEqGMiGTJEkaJSZkkiRJHTMhkyRJ6pgJmSRJUsdMyCRJkjpmQiZJktQxEzJJkqSOmZBJkiR1zJn6JY21+Z5lvo1Z650JfzztzF0p/DwMv6FsIXOmfkmSNEqGMiGTJEkaJSZkkiRJHTMhkyRJ6pgJmSRJUsdMyCRJkjpmQiZJktQxEzJJkqSOmZBJkiR1zIRMkiSpYyZkkiRJHTMhkyRJ6pgJmSRJUsf26DqAKUn2Ac4A7gY2VtU5HYckSZK0IFptIUtyVpItSa6YVn5UkquTXJPklKb454Dzq+pE4IVtxiVJkrSYtN1leTZwVH9BkiXA6cDRwMHAsUkOBvYDrm9Wu7fluCRJkhaNVFW7O0hWAhdV1SHN8hHAm6vquc3yqc2qm4HbquqiJOur6phZtrcWWAuwfPnyp61fv77V+LfcOslNd7W6C3Vo+V54fkfYuJ3fQ1csG2i9y2+Y3OX3LsT2BrV161aWLl26y/HM93rzbab97oxh/jzMdm7nS1fn9Mgjj9xUVRMzvdbFGLIV/LAlDHqJ2OHAacB7kjwf2DDbm6tqHbAOYGJiolavXt1epMC7z7mAd1y+aIbaaZ6dfOg2z+8IG7fze91xqwda7/hTLt7l9y7E9ga1ceNGZvoNGDSe+V5vvs20350xzJ+H2c7tfOnqnO7IovlLVVV3Aq/qOg5JkqSF1sW0FzcA+/ct79eUDSzJmiTrJid3rzlXkiRpMegiIbsMODDJAUn2BI4BLtyZDVTVhqpau2xZ+/29kiRJbWt72otzgc8DByXZnOSEqtoGnARcClwFnFdVV7YZhyRJ0mLW6hiyqjp2lvJLgEt2dbtJ1gBrVq1ataubkCRJWjSG8tZJdllKkqRRMpQJmSRJ0igZyoTMqywlSdIoGcqEzC5LSZI0Slq/dVKbknwb+HrLu9kXuLnlfag7nt/R5vkdbZ7f0TWq5/ZxVfXImV4Y6oRsIST54mz3ndLw8/yONs/vaPP8jq5xPLdD2WUpSZI0SkzIJEmSOmZCNrd1XQegVnl+R5vnd7R5fkfX2J1bx5BJkiR1zBYySZKkjpmQSZIkdcyEbAeSHJXk6iTXJDml63g0tyT7J/lMkq8kuTLJ65ryH0nyiST/2fz78KY8SU5rzvF/JDmsb1uvbNb/zySv7KpO2l6SJUm+nOSiZvmAJF9ozuOHkuzZlD+oWb6meX1l3zZObcqvTvLcjqqiaZI8LMn5Sb6a5KokR/j9HQ1Jfqv5u3xFknOTPNjv7g+ZkM0iyRLgdOBo4GDg2CQHdxuVBrANOLmqDgaeAby2OW+nAJ+qqgOBTzXL0Du/BzaPtcB7oZfAAW8CDgeeDrxp6kdAi8LrgKv6lv8EeGdVrQJuA05oyk8AbmvK39msR/OZOAZ4EnAUcEbznVf3/gL4WFU9AXgyvfPs93fIJVkB/AYwUVWHAEvofQf97jZMyGb3dOCaqrq2qu4G1gMv6jgmzaGqbqyqLzXP76D3x3wFvXP3V81qfwW8uHn+IuCD1fMvwMOS/DfgucAnqurWqroN+AS9L786lmQ/4PnA+5vlAM8Czm9WmX5+p877+cCzm/VfBKyvqu9X1deAa+h959WhJMuAnwLOBKiqu6vqO/j9HRV7AHsl2QPYG7gRv7s/YEI2uxXA9X3Lm5syDYmmifupwBeA5VV1Y/PSt4DlzfPZzrPnf/F6F/B64L5m+RHAd6pqW7Pcf65+cB6b1yeb9T2/i9MBwLeBDzRd0u9Psg9+f4deVd0AvB34Br1EbBLYhN/dHzAh00hKshT4O+A3q+r2/teqN9eL870MoSQvALZU1aauY1Er9gAOA95bVU8F7uSH3ZOA399h1XQZv4he0v0YYB9stbwfE7LZ3QDs37e8X1OmRS7JA+klY+dU1Uea4puargyaf7c05bOdZ8//4vSTwAuTXEdvGMGz6I05eljTDQL3P1c/OI/N68uAW/D8Llabgc1V9YVm+Xx6CZrf3+H3HOBrVfXtqroH+Ai977Pf3YYJ2ewuAw5srgDZk94gwgs7jklzaMYYnAlcVVV/3vfShcDUlVavBC7oK39Fc7XWM4DJpmvkUuBnkjy8+Z/dzzRl6lBVnVpV+1XVSnrfyU9X1XHAZ4CXNKtNP79T5/0lzfrVlB/TXMl1AL1B4f+6QNXQLKrqW8D1SQ5qip4NfAW/v6PgG8Azkuzd/J2eOrd+dxt7zL3KeKqqbUlOovclXgKcVVVXdhyW5vaTwC8Blyf5t6bsjcDbgPOSnAB8HXhp89olwPPoDQz9LvAqgKq6Nckf0kvMAf6gqm5dkBpoV7wBWJ/kj4Av0wwKb/796yTXALfSS+KoqiuTnEfvB2Eb8Nqqunfhw9YMfh04p/mP8LX0vpMPwO/vUKuqLyQ5H/gSve/cl+ndHuli/O4C3jpJkiSpc3ZZSpIkdcyETJIkqWMmZJIkSR0zIZMkSeqYCZkkSVLHTMgkSZI6ZkImSZLUMRMySZKkjpmQSZIkdcyETJIkqWMmZJIkSR0zIZMkSeqYCZkkSVLHTMgkSZI6ZkImSZLUMRMySZKkjpmQSZp3SfZKsiHJZJIPdx3PdEkqyaqu49iR+Y4xyRuTvH++tidpfpmQSQssyXVJntPi9q9MsrV53Jvke33Lb2xrv9O8BFgOPKKqfmGB9jkvkmxM8svDtM8kb07yNzOU/yCpq6q3VtWc++ii/pJgj64DkDS/qupJU8+TbAT+pqq2axlJskdVbWspjMcB/29Xtt9yXOqQ51aanS1k0iKR5EFJ3pXkm83jXUke1Pf665Pc2Lz2yzvbpZVkZfOeE5J8A/h0U/7hJN9quhc/m6Q/oTs7yelJLk5yR5IvJPnR5rUkeWeSLUluT3J5kkOS/D7we8DLmla5E5I8IMnvJPl6s/4HkyybLa4kxyf552b730lybZJnNuXXN9t45bRj9/Yk30hyU5L3Jdmr7/Xf7jt2r96Nc/TqJFcluS3JpUke1/daJXlNkv9sYj49SZrXliR5R5Kbk3wtyUnN+nskeQvwP4D3NMfrPX27fM5M29vF2H/QipbkwUn+JsktzbYvS7J8tliaY39Z8xm5LMkz+7Z7QPO5uSPJJ5s4p/azq5+5M5L8QxPDPyd5dHrfh9uSfDXJU3f1OEiLlQmZtHj8H+AZwFOAJwNPB34HIMlRwP8CngOsAlbvxn7+J/BE4LnN8j8ABwKPAr4EnDNt/WOA3wceDlwDvKUp/xngp4AfA5YBLwVuqao3AW8FPlRVS6vqTOD45nEk8HhgKdCfeMwU1+HAfwCPAP4WWA/8BL36v5xe0rC0WfdtTRxPaV5fQS8pnDp2/xv46aaeu9RdnORFwBuBnwMeCfwTcO601V7QxPjjzfGYqsuJwNFNfIcBL556Q1X9n2ZbJzXH66QBtre7XknvnO1P7/i+BrhrpliS/AhwMXBas+6fAxcneUSzrb8F/rV57c3AL82wv539zL2U3md/X+D7wOeb9fYFzm9ikEaKCZm0eBwH/EFVbamqb9NLgqZ+3F4KfKCqrqyq79L74dtVb66qO6vqLoCqOquq7qiq7zfbffJU61Xjo1X1r01X0zn0kgqAe4CHAE8AUlVXVdWNO6jbn1fVtVW1FTgVOCZJ/7CJ+8UFfK2qPlBV9wIfopc8/EFVfb+qPg7cDaxqWo3WAr9VVbdW1R30EsJjmu1MHbsrqupOdv3YvQb446ae25p9PKW/lQx4W1V9p6q+AXyGHx6rlwJ/UVWbq+o2egnkIGbb3kxe2rR2/eCxg3XvoZdAraqqe6tqU1XdPsu6zwf+s6r+uqq2VdW5wFeBNUkeSy9h/L2quruqPgdcOMM2duUzt6mqvgd8FPheVX2w77NgC5lGjgmZtHg8Bvh63/LXm7Kp167ve63/+c76wXubrrS3JfmvJLcD1zUv7du3/rf6nn+XXusWVfVpeq1cpwNbkqxL8tBZ9jlT3fagN/B/u7gaN/U9n/ohn162lF5r1d7Apr5E5GNN+dS++7fdH8fOeBzwF337uBUIvda4KTMeqxliGPT8zba9mZxXVQ/rf+xg3b8GLgXWN924f5rkgbOsO/3c0SyvaF67tflPwpSZ6razn7np53mm8y6NFBMyafH4Jr0f/SmPbcoAbgT263tt/93YT/U9/0XgRfS68ZYBK5vygcYqVdVpVfU04GB6XYa/PcuqM9VtG/f/oS12zc30fqSf1JeMLKuqqR/tG7n/8XrsLu7neuBXpiU9e1XV/zfAe+c6f7ta911SVfdU1e9X1cHAM+l1jb5illimnzvoHcMb6NXrR5Ls3ffaTJ/NefvMSaPKhEzqxgObgdVTjz3ojUf6nSSPTLIvvTFQU1MZnAe8KskTmx+/352nOB5Cb4zOLfRamd466BuT/ESSw5uWlTuB7wH3zbL6ucBvNQPAl/LDMWa7fcVdVd0H/CXwziSPamJbkWRqvNJ5wPFJDm6O3ZsG2Owe087PA4H3AadODUBPsizJoFN6nAe8ronrYcAbpr1+E72xdQsiyZFJDk2yBLidXhfm1LmbHsslwI8l+cXmIoSX0UvAL6qqrwNfBN6cZM8kRwBr5tj9Ln/mpFFmQiZ14xJ6rTpTjzcDf0Tvx+0/gMvpDWL+I4Cq+gd6g6o/Q29g/b802/n+bsbxQXrdTzcAX+nb7iAeSi8Ruq3Zxi3An82y7ln0usk+C3yNXvL267sW8ozeQHNcmm6wTwIHwQ+O3bvoXeF3TfPvXN7L/c/PB6rqo8Cf0Ovmux24gt5A/UH8JfBxeuf2y/TO/zbg3ub1vwBe0lxFeNqA29wdj6Y3OP524CrgH+mdn+1iqapb6LWgnUzvHL8eeEFV3dysfxxwRPPaH9Eb47Wjz+XufOakkZWqBW0plzQPkjyRXkLwIOd1Gj5JjgbeV1XTuwKHXpIPAV9trraVNCBbyKQhkeRn05tv6+H0Wmo2mIwNh/RuJfW8pstvBb1u0492Hdd8aLqufzS9ueaOojc+7O87DksaOiZk0vD4FWAL8F/0urp+tdtwtBNCbxqT2+h1WV5FM0/aCHg0sBHYSq9b/Ver6sudRiQNIbssJUmSOmYLmSRJUseG+ubi++67b61cubLVfdx5553ss88+re5D7fIcDjfP33Dz/A03z9/82rRp081V9ciZXhvqhGzlypV88YtfbHUfGzduZPXq1a3uQ+3yHA43z99w8/wNN8/f/Eoy651C7LKUJEnqmAmZJElSx0zIJEmSOmZCJkmS1DETMkmSpI6ZkEmSJHXMhEySJKljJmSSJEkdG8qELMmaJOsmJye7DkWSJGm3DeVM/VW1AdgwMTFxYtexSNKoWnnKxduVXfe253cQiTT6hjIhkyTNr5mSr0HXM0mTdp8JmSRpt5ikSbvPhEySNO+mkrSTD93G8c3zmZI0kzmpx4RMkrQg7BaVZmdCJkljZtDEaDGZLWYTNY0KEzJJ0tCyNU2jYijnIZMkSRoltpBJ0ggbxu7J3TVonW1J02JiC5kkSVLHbCGTpBExjq1h0qgwIZMkqeFFAuqKCZkkaSzZoqjFxDFkkiRJHbOFbA6X3zD5g9t+TLH5WlLXbN2RRsuiSciSPBF4HbAv8Kmqem/HIUmS5LgyLYhWuyyTnJVkS5IrppUfleTqJNckOQWgqq6qqtcALwV+ss24JEmSFpO2x5CdDRzVX5BkCXA6cDRwMHBskoOb114IXAxc0nJckiRJi0arCVlVfRa4dVrx04FrquraqrobWA+8qFn/wqo6GjiuzbgkSZIWk1RVuztIVgIXVdUhzfJLgKOq6peb5V8CDgfOB34OeBDwH1V1+izbWwusBVi+fPnT1q9f32r8W26d5Ka77l926Iplre5T82vr1q0sXbq06zC0izx/vYuLhtXyvdjub+goGJffAb9/8+vII4/cVFUTM722aAb1V9VGYOMA660D1gFMTEzU6tWrW43r3edcwDsuv/9huu64dvep+bVx40ba/pyoPZ4/trvSe5icfOi27f6GjoJx+R3w+7dwuviW3ADs37e8X1MmSdJQ8MpLzbcuJoa9DDgwyQFJ9gSOAS7cmQ0kWZNk3eTk8DbjS5IkTWm1hSzJucBqYN8km4E3VdWZSU4CLgWWAGdV1ZU7s92q2gBsmJiYOHG+Y5akrjjZqzS+Wk3IqurYWcovwaktJEmSgCG9l6VdlpIkaZQMZUJWVRuqau2yZeNx2bEkSRpto3ctsiRJHfDKS+0OEzJJ6oAD+CX1G8ouS8eQSZKkUTKUCZljyCRJ0igZyoRMkiRplJiQSZIkdWwoEzLHkEmSpFEylFdZeuskSdIwcCoMDWooEzJJGiZOcSFpLkPZZSlJkjRKTMgkSZI6ZkImSZLUsaFMyLzKUpIkjZKhHNTvVZaSpGHllZeayVC2kEmSJI0SEzJJkqSODWWXpSQtVs45JmlX2EImSZLUsaFMyLzKUpIkjZKh7LL0KktJi4Hdk5Lmy1AmZJIkjRKnwtBQdllKkiSNEhMySZKkjpmQSZIkdcyETJIkqWMO6pekAXhFpRaaA/3Hy1C2kDkPmSRJGiVDmZBV1YaqWrts2bKuQ5EkSdptQ5mQSZIkjRITMkmSpI6ZkEmSJHXMhEySJKljJmSSJEkdcx4ySZKGxGzz4Tk/2fCzhUySJKljJmSSJEkdMyGTJEnqmAmZJElSx4ZyUH+SNcCaVatWdR2KpBHkjcQlLbShbCHzXpaSJGmUDGVCJkmSNEqGsstSkiT90Ezd7M5NNlxsIZMkSeqYCZkkSVLHTMgkSZI6ZkImSZLUMQf1S5I0ghzoP1xsIZMkSeqYLWSSxpqz8ktaDGwhkyRJ6pgJmSRJUsdMyCRJkjpmQiZJktQxEzJJkqSOmZBJkiR1bFFNe5HkxcDzgYcCZ1bVx7uNSNIocYoLSYvVQC1k6Xl5kt9rlh+b5OkDvvesJFuSXDGt/KgkVye5JskpAFX191V1IvAa4GU7VxVJkqThNGgL2RnAfcCzgD8A7gD+DviJAd57NvAe4INTBUmWAKcDPw1sBi5LcmFVfaVZ5Xea1yVJ0jzxdkqLV6pq7pWSL1XVYUm+XFVPbcr+vaqePNBOkpXARVV1SLN8BPDmqnpus3xqs+rbmscnquqTs2xrLbAWYPny5U9bv379ICHssi23TnLTXfcvO3TFslb3qfm1detWli5d2nUY2kXzef4uv2FyXrajwS3fi+3+hmpx2dFvmn8/59eRRx65qaomZnpt0Baye5pWrQJI8kh6LWa7agVwfd/yZuBw4NeB5wDLkqyqqvdNf2NVrQPWAUxMTNTq1at3I4y5vfucC3jH5fc/TNcd1+4+Nb82btxI258TtWc+z9/xjiFbcCcfum27v6FaXHb0m+bfz4Uz6LfkNOCjwKOSvAV4Cb1uxXlVVac1+5IkSRobAyVkVXVOkk3As4EAL66qq3ZjvzcA+/ct79eUDSTJGmDNqlWrdiMESZKkxWHQqyyfAdxQVadX1XuAG5Icvhv7vQw4MMkBSfYEjgEuHPTNVbWhqtYuW+ZYLkmSNPwGnRj2vcDWvuWtTdmckpwLfB44KMnmJCdU1TbgJOBS4CrgvKq6cvCwJUmSRsegY8hSfZdjVtV9SQbt7jx2lvJLgEsG3L8kSdLIGrSF7Nokv5Hkgc3jdcC1bQa2I0nWJFk3Oekl7JIkafgNmpC9BngmvYH3U1NUrG0rqLk4hkySJI2SQbsdt9AbeC9JkkaIs/cvDgMlZM1EsCcCK/vfU1WvbiesOeNx2gtJkjQyBu2yvABYBnwSuLjv0Qm7LCVJ0igZ9CrLvavqDa1GIkmSNKYGbSG7KMnzWo1EkiRpTA2akL2OXlL2vSS3J7kjye1tBiZJkjQuBr3K8iFtB7IzHNQvSZJGyaD3skySlyf53WZ5/yRPbze02TmoX5IkjZJBuyzPAI4AfrFZ3gqc3kpEkiRJY2bQqywPr6rDknwZoKpuS7Jni3FJkiSNjUFbyO5JsgQo+MFEsfe1FpUkSdIYGTQhOw34KPCoJG8BPge8tbWo5uDNxSVJ0iiZMyFL8gDga8DrgT8GbgReXFUfbjm2WTmoX5IkjZI5x5BV1X1JTq+qpwJfXYCYJEmSxsqgg/o/leTngY9UVbUZkCTNh5WndHa7XWnoTX1/Tj50G8c3z6972/O7DGnkDTqG7FeADwPfd6Z+SZKk+TVnC1kzhuyoqvrnBYhHkiRp7MzZQlZV9wHvWYBYJEmSxtKgXZafSvLzSdJqNANy2gtJkjRKhnIMmdNeSJKkUTLQVZZV9ZC2A5GkXeUVlZKG3UAJWZKfmqm8qj47v+FIkiSNn0HnIfvtvucPBp4ObAKeNe8RSZIkjZlBuyzX9C8n2R94VxsBSZIkjZtBB/VPtxl44nwGIkmSNK4GHUP2bmDqlkkPAJ4CfKmlmCRJksbKoGPIvtj3fBtwbpcz9ydZA6xZtWpVVyFIkiTNm0ETsvOB71XVvQBJliTZu6q+215os6uqDcCGiYmJE7vYvyRJ0nwaNCH7FPAcYGuzvBfwceCZbQQlSZIWl5nm+7vubc/vIJLRNGhC9uCqmkrGqKqtSfZuKSZJAno/ACcfuo3j+34I/AGQNIoGvcryziSHTS0keRpwVzshSZIkjZdBW8h+E/hwkm8CAR4NvKytoCRJksbJoBPDXpbkCcBBTdHVVXVPe2FJ0sy8b6WkUTRQl2WS1wL7VNUVVXUFsDTJr7UbmiRJ0ngYtMvyxKo6fWqhqm5LciJwRjthSZKkxc4rL+fPoIP6lyTJ1EKSJcCe7YQkSZI0XgZtIbsU+FCS/9ssvwb4WDshSZIkjZdBE7LfBU4EpsaNXQqc2UpEkiRJY2aHCVmSPYC3Aq8Crm+KHwtcS6+7895Wo5s9Lu9lKUmSRsZcY8j+DPgR4PFVdVhVHQYcACwD3t52cLOpqg1VtXbZsmVdhSBJkjRv5krIXkDvCss7pgqa578KPK/NwCRJksbFXAlZVVXNUHgvsF25JEmSdt5cCdlXkrxiemGSlwNfbSckSZKk8TLXVZavBT6S5NXApqZsAtgL+Nk2A5MkSRoXO0zIquoG4PAkzwKe1BRfUlWfaj0ySSNptntROru3pHE26M3FPw18uuVYJEmSxtKgt06SJElSS0zIJEmSOmZCJkmS1DETMkmSpI4NenNxSZKkXTLT1dVeWX1/tpBJkiR1zBYySZI0b2aba1A7ZguZJElSxxZNQpbk8UnOTHJ+17FIkiQtpFa7LJOcBbwA2FJVh/SVHwX8BbAEeH9Vva2qrgVOMCGTRsfOdF3YzSFpnLXdQnY2cFR/QZIlwOnA0cDBwLFJDm45DkmSpEWr1YSsqj4L3Dqt+OnANVV1bVXdDawHXtRmHJIkSYtZF1dZrgCu71veDBye5BHAW4CnJjm1qv54pjcnWQusBVi+fDkbN25sNdjle8HJh267X1nb+9T82rp1q+esI9O/O7tipu+ghofnb7i1ef78u3x/i2bai6q6BXjNAOutA9YBTExM1OrVq1uN693nXMA7Lr//YbruuHb3qfm1ceNG2v6caGbHz8O4sJMP3bbdd1DDw/M33No8f/6W3l8XV1neAOzft7xfUyZJkjSWukjILgMOTHJAkj2BY4ALd2YDSdYkWTc5OdlKgJIkSQup1YQsybnA54GDkmxOckJVbQNOAi4FrgLOq6ord2a7VbWhqtYuW7Zs/oOWJElaYK127FfVsbOUXwJc0ua+JUmShsWimal/Z9hlKUmSRslQJmR2WUqSpFEylAmZJEnSKDEhkyRJ6thQztaXZA2wZtWqVV2HIqnhzcEl7YyZ/mZc97bndxDJ4jCULWSOIZMkSaNkKBMySZKkUWJCJkmS1DHHkEnaIceGSVL7hrKFzDFkkiRplAxlQiZJkjRKTMgkSZI6ZkImSZLUMRMySZKkjg1lQpZkTZJ1k5OTXYciSZK024YyIfMqS0mSNEqGMiGTJEkaJSZkkiRJHTMhkyRJ6pgJmSRJUse8l6UkSRp6s91397q3PX+BI9k1Q9lC5lWWkiRplAxlQiZJkjRKTMgkSZI6ZkImSZLUMRMySZKkjpmQSZIkdcyETJIkqWPOQyaNqdnm7JGkxWSmv1U7M7fY7r5/oQxlC5nzkEmSpFEylAmZJEnSKDEhkyRJ6pgJmSRJUsdMyCRJkjpmQiZJktQxEzJJkqSOmZBJkiR1zIRMkiSpYyZkkiRJHTMhkyRJ6pj3spRGzLDct02Sphv0Hru7ey/exfh3cihbyLyXpSRJGiVDmZBJkiSNEhMySZKkjpmQSZIkdcyETJIkqWMmZJIkSR0zIZMkSeqYCZkkSVLHTMgkSZI6ZkImSZLUMRMySZKkjpmQSZIkdcyETJIkqWMmZJIkSR0zIZMkSeqYCZkkSVLH9ug6gClJ9gHOAO4GNlbVOR2HJEmStCBabSFLclaSLUmumFZ+VJKrk1yT5JSm+OeA86vqROCFbcYlSZK0mLTdZXk2cFR/QZIlwOnA0cDBwLFJDgb2A65vVru35bgkSZIWjVRVuztIVgIXVdUhzfIRwJur6rnN8qnNqpuB26rqoiTrq+qYWba3FlgLsHz58qetX7++1fi33DrJTXfdv+zQFcta3afm19atW1m6dGnXYey2y2+Y3K5sps/iTOsNs+V7sd13UMPD8zfcxun8LcRv+5FHHrmpqiZmeq2LMWQr+GFLGPQSscOB04D3JHk+sGG2N1fVOmAdwMTERK1evbq9SIF3n3MB77j8/ofpuuPa3afm18aNG2n7c7IQjj/l4u3KZvoszrTeMDv50G3bfQc1PDx/w22czl/Xv+2L5ihX1Z3Aq7qOQ5IkaaF1Me3FDcD+fcv7NWUDS7ImybrJydHqmpEkSeOpi4TsMuDAJAck2RM4BrhwZzZQVRuqau2yZY7lkiRJw6/taS/OBT4PHJRkc5ITqmobcBJwKXAVcF5VXdlmHJIkSYtZq2PIqurYWcovAS5pc9+SJEnDYihvneQYMkmSNEqGMiFzDJkkSRolQ5mQSZIkjZKhTMjsspQkSaOk9VsntSnJt4Gvt7ybfYGbW96H2uU5HG6ev+Hm+Rtunr/59biqeuRMLwx1QrYQknxxtvtOaTh4Doeb52+4ef6Gm+dv4Qxll6UkSdIoMSGTJEnqmAnZ3NZ1HYB2m+dwuHn+hpvnb7h5/haIY8gkSZI6ZguZJElSx0zIJEmSOmZCtgNJjkpydZJrkpzSdTwaXJL9k3wmyVeSXJnkdV3HpJ2XZEmSLye5qOtYtHOSPCzJ+Um+muSqJEd0HZN2TpLfav5+XpHk3CQP7jqmUWZCNoskS4DTgaOBg4FjkxzcbVTaCduAk6vqYOAZwGs9f0PpdcBVXQehXfIXwMeq6gnAk/E8DpUkK4DfACaq6hBgCXBMt1GNNhOy2T0duKaqrq2qu4H1wIs6jkkDqqobq+pLzfM76P0YrOg2Ku2MJPsBzwfe33Us2jlJlgE/BZwJUFV3V9V3Og1Ku2IPYK8kewB7A9/sOJ6RZkI2uxXA9X3Lm/EHfSglWQk8FfhCx6Fo57wLeD1wX8dxaOcdAHwb+EDT5fz+JPt0HZQGV1U3AG8HvgHcCExW1ce7jWq0mZBppCVZCvwd8JtVdXvX8WgwSV4AbKmqTV3Hol2yB3AY8N6qeipwJ+A43CGS5OH0eoUOAB4D7JPk5d1GNdpMyGZ3A7B/3/J+TZmGRJIH0kvGzqmqj3Qdj3bKTwIvTHIdveECz0ryN92GpJ2wGdhcVVOt0ufTS9A0PJ4DfK2qvl1V9wAfAZ7ZcUwjzYRsdpcBByY5IMme9AYzXthxTBpQktAbv3JVVf151/Fo51TVqVW1X1WtpPfd+3RV+b/zIVFV3wKuT3JQU/Rs4CsdhqSd9w3gGUn2bv6ePhsvzGjVHl0HsFhV1bYkJwGX0ru65KyqurLjsDS4nwR+Cbg8yb81ZW+sqku6C0kaK78OnNP8h/Za4FUdx6OdUFVfSHI+8CV6V61/GW+j1CpvnSRJktQxuywlSZI6ZkImSZLUMRMySZKkjpmQSZIkdcyETJIkqWMmZJIkSR0zIZMkSeqYCZkkSVLHTMgkSZI6ZkImSZLUMRMySZKkjpmQSZIkdcyETJIkqWMmZJIkSR0zIZMkSeqYCZkkSVLHTMgkLRpJDkryb0nuSPIbXcfTL8nqJJu7jmNH2ogxyT8keeV8blPS9kzIpF2U5LokdyXZmuS2JBcn2b+lfT00ybuSfKPZ3381y/vO0/Yf22x36lFJ7uxb/h/zsZ8BvB74TFU9pKpOW6B9zovmmK0apn0m2Zjkl6eV3S+pq6qjq+qv2o5FGncmZNLuWVNVS4H/BtwEvHu+d5BkT+BTwJOAo4CHAkcAtwBPn499VNU3qmrp1KMpfnJf2T/1xbPHfOxzFo8DrtyVN7YclzrkudU4MCGT5kFVfQ84Hzh4qizJsiQfTPLtJF9P8jtJHpDkR5JsTrKmWW9pkmuSvGKWzb8CeCzws1X1laq6r6q2VNUfVtUlzTae2LR2fCfJlUle2JQ/M8nNUy13SZ7ctOY9YdC6JTk+yT8neWeSW4A3J/nRJJ9Ockuz/XOSPKzvPdcl+d9J/iPJZJIPJXlw89q+SS5qYr01yT81x+XTwJHAe5pWuR+b7RjuIK6zk5zRdLNtbV5/dNOaeFuSryZ5al+cj0nyd832v9bfTZpkr2Z7tyX5CvATgx6zacfvQUne3rRu3pTkfUn2al5b3XwWTk6yJcmNSV7V995HJNmQ5PYklyX5oySfa177bLPavzd1fVnf+2bc3i7G/4NWtCSrkvxjc05vTvKhHcWS5MTms31rkguTPKZvuz+T5OpmW2c0253az65+5n67+czdmeTMJMubz8IdST6Z5OG7cyykNpmQSfMgyd7Ay4B/6St+N7AMeDzwP+klVq+qqluBVwN/meRRwDuBf6uqD86y+ecAH6uqrbPs+4HABuDjwKOAXwfOSXJQVf1/wP8F/qpJAv4G+N2q+upOVvFw4FpgOfAWIMAfA48BngjsD7x52nteSq9F7wDgx4Hjm/KTgc3AI5vtvRGoqnoW8E/ASU2r3P9jlmO4g7im9vs7wL7A94HPA19qls8H/rw5bg9ojtu/AyuAZwO/meS5zXbeBPxo83gusKvjqN4G/BjwFGBVs6/f63v90U0dVwAnAKf3JQ6nA3c267yyP4aq+qnm6VRL5ocG2N7u+kN6n7OHA/vRtAjPFEuSZ9H7jLyUXgvy14H10EvK6Z2LU4FHAFcDz5y2r135zP088NP0jvca4B/ofb4eSe/3blGNS5Tup6p8+PCxCw/gOmAr8B3gHuCbwKHNa0uAu4GD+9b/FWBj3/K7gcuBG4BH7GA/nwDetoPX/wfwLeABfWXnAm9unj8Q2NTs62NABqhbAaua58cD35hj/RcDX552bF7et/ynwPua538AXDC1/Wnb2Qj88iDHcKa4gLOBv+xb/nXgqr7lQ4HvNM8Pn+H9pwIfaJ5fCxzV99paYPMgx6yvLPQSqh/tKzsC+FrzfDVwF7BH3+tbgGc09b8HOKjvtT8CPjfbPne0vVli3gh8l95neOqxtb+e087JB4F1wH5z1R84E/jTvuWlTX1W0kusPz/tOF3ft59d/cwd17f8d8B7p30W/n6uz74PH109bCGTds+Lq+phwIOBk4B/TPJoeq0xD6TXKjDl6/RaLaasAw4Bzq6qW2D7wfXNerfQa2GYzWOA66vqvpn2VVX30EtUDgHeUVW1C/W8vn+h6Qpan+SGJLfTa3mbfoHBt/qef5feDzLAnwHXAB9Pcm2SU2bZ5yDH8H5xNW7qe37XDMtTcTwOeEx6XaffSfIdeq0py5vXHzNt+/1xDOqRwN7Apr59fKwpn3JLVW3rW546Vo8E9pgWw0z1nW627c3mN6rqYVMP4AU7WPf19JKnf02va/zVO1j3MfQds+q18N5C7/zd79g2n8npV4fuymdu0HMvLTomZNI8qKp7q+ojwL3Afwduptca8Li+1R5LrzWMJEvoJWQfBH4tzdVpNfPg+k8Cz02yzyy7/yawf9MFN9O+VtDrfvsA8I4kD9qVKk5bfmtTdmhVPRR4Ob0f6rk3VHVHVZ1cVY8HXgj8ryTPnmHVHR7DWeLaGdfTa6l6WN/jIVX1vOb1G+l1i/Xve2fdTC8ReFLfPpb1ndsd+TawjV7X4JRWruIdVFV9q6pOrKrH0GutPCOzX1n5TfrOXfP5fQS983cjffVKEu5fT5jHz5w0DEzIpHmQnhfRG1tzVVXdC5wHvCXJQ5I8Dvhf9P5XD824KXpjyf4M+GCTpM3kr+klD3+X5AnpDYB/RJI3Jnke8AV6rSCvT/LAJKvpjZ9Z3/zQnU2v++gEej+EfzgPVX4Iva6tySbh++1B35jkBc3g8ACT9JLY+6avN8Ax3F3/CtyR5A3pDeBfkuSQJFOD988DTk3y8CT70evymsueSR489aCXMPwl8M5mvCBJVvSNU5tVU/+P0BvQvnd6F2JMv/DjJnrj6xZEkl9ojgXAbfQ+w1Pnbnos5wKvSvKU5j8BbwW+UFXXARcDhyZ5cXpXUL6W3ti3Hdnlz5w0DEzIpN2zoelavJ3ewONXVtXUtA2/Tm/80LXA54C/Bc5K8jR6icUrmh/dP6H3wzZj111VfZ/ewP6v0htPdju9ZGJfej9wd9NLwI6m1yJzRrPtr9IbxPwoegP5i96A+Fdl9+cV+33gMHoJ1cX0EodBHUiv1W8rvQH3Z1TVZ2ZZd8ZjuIsx309z7F9Ab7D91+gdu/fTGxAPvTp+vXnt4/QS47lcSa9FbOrxKuAN9Lpo/6XpavskcNCAYZ7UxPOtZv/n0rtQYcqb6V2w8Z0kLx1wm7vjJ4AvNJ/5C4HXVdW1M8VSVZ8EfpfeWK4b6V0ccQxAVd0M/AK9sYW30Ls6+Yvcv27T7c5nTlr0smvDSSRJCy3JnwCPrqqRmjm/6W7fTG9Q/mzJuTTSbCGTpEWq6aL+8aZL/On0up0/2nVc8yHJc5M8rOnOfCO97t1/meNt0shy9mNJWrweQq+b8jH0xmi9g96UIaPgCHpd0HsCX6F3xfJd3YYkdccuS0mSpI7ZZSlJktSxoe6y3HfffWvlypWt7uPOO+9kn31mm/5p9Fl/62/9rf+4Guf6j3Pdob36b9q06eaqeuRMrw11QrZy5Uq++MUvtrqPjRs3snr16lb3sZhZf+tv/Vd3HUZnrP/41n+c6w7t1T/JrHf8sMtSkiSpYyZkkiRJHTMhkyRJ6pgJmSRJUsdMyCRJkjpmQiZJktQxEzJJkqSODWVClmRNknWTk5NdhyJJkrTbhjIhq6oNVbV22bJlXYciSZK024Z6pn6pTStPuZiTD93G8adcvMP1rnvb8xcoIknSqDIhk+glX5IkdWUouywlSZJGiS1k0m6aqXXNbkxJ0s4wIdPYWYjuydn2YaImSZqJXZaSJEkdMyGTJEnqmF2WGmmL7erJQeOxa1OSxosJmbQIeaGAJI0XEzKNjMXWGjbfTNIkaXSZkElDzCRNkkaDg/olSZI6ZkImSZLUMbss53D5DZPb3VzaLqHujfp4sd3hlZySNHxsIZMkSerYoknIkjwxyfuSnJ/kV7uOR5IkaaG0mpAlOSvJliRXTCs/KsnVSa5JcgpAVV1VVa8BXgr8ZJtxSZIkLSZtjyE7G3gP8MGpgiRLgNOBnwY2A5clubCqvpLkhcCvAn/dclwaIo4Xa8egU2Y4tYYktS9V1e4OkpXARVV1SLN8BPDmqnpus3wqQFX9cd97Lq6qGf/iJ1kLrAVYvnz509avX99q/FtuneSmu+5fduiKZa3uczHZunUrS5cu7TSGy2+Y7Gzfy/diu/M/Tmar/7h8BxbD579L1n986z/OdYf26n/kkUduqqqJmV7r4irLFcD1fcubgcOTrAZ+DngQcMlsb66qdcA6gImJiVq9enVbcQLw7nMu4B2X3/8wXXdcu/tcTDZu3Ejbx3gu069yXUgnH7ptu/M/Tmar/7h8BxbD579L1n986z/OdYdu6r9ofmmqaiOwseMwJEmSFlwXV1neAOzft7xfUzawJGuSrJuc7K4rS5Ikab50kZBdBhyY5IAkewLHABfuzAaqakNVrV22bDzGsUiSpNHWapdlknOB1cC+STYDb6qqM5OcBFwKLAHOqqor24xD0vzanStfvUJTkrbXakJWVcfOUn4JOxi4P5cka4A1q1at2tVNaJFyigtJ0jhaNDP17wy7LCVJ0igZyoRMkiRplJiQSZIkdWzRzEO2MxxDJg2v2cYJOthf0jgbyoSsqjYAGyYmJk7sOhZJ88N7ZkoaZ3ZZSpIkdcyETJIkqWND2WWp0eCcY5Ik9QxlC5n3spQkSaNkKBMyJ4aVJEmjxC5LSYuWV15KGhdD2UImSZI0SkzIJEmSOjaUXZbO1D98vKJSkqTZDWULmYP6JUnSKBnKhEySJGmUDGWXpaTx5ZWXkkaRLWSSJEkdMyGTJEnq2FB2WXqVpaR+dmNKGnZD2ULmVZaSJGmUDGVCJkmSNEpMyCRJkjo2lGPItHg5I78WC8eVSRomtpBJkiR1zIRMkiSpYyZkkiRJHTMhkyRJ6thQJmRJ1iRZNzk52XUokiRJu20or7Ksqg3AhomJiRO7jkXS8PDKS0mL1VC2kEmSJI2SoWwhk6T5YquZpMXAFjJJkqSOmZBJkiR1zIRMkiSpYyZkkiRJHTMhkyRJ6phXWUrSNFNXXp586DaOb5575aWkNtlCJkmS1DETMkmSpI4NZZdlkjXAmlWrVnUdiqQx4QSykto0lC1kVbWhqtYuW7as61AkSZJ221AmZJIkSaNkKLssJWkxsBtT0nwxIdMum+nHSJIk7Ty7LCVJkjpmQiZJktQxuywlaR45rkzSrrCFTJIkqWMmZJIkSR0zIZMkSeqYY8gkqWWOK5M0F1vIJEmSOmZCJkmS1DETMkmSpI6ZkEmSJHVsUQ3qT/Ji4PnAQ4Ezq+rj3UYkSe1woL+kfq23kCU5K8mWJFdMKz8qydVJrklyCkBV/X1VnQi8BnhZ27FJkiQtBgMlZOl5eZLfa5Yfm+TpA+7jbOCoadtbApwOHA0cDByb5OC+VX6neV2SJGnkDdpCdgZwBHBss3wHAyZMVfVZ4NZpxU8Hrqmqa6vqbmA98KIm8fsT4B+q6ksDxiZJkjTUUlVzr5R8qaoOS/LlqnpqU/bvVfXkgXaSrAQuqqpDmuWXAEdV1S83y78EHA78P+CVwGXAv1XV+2bY1lpgLcDy5cuftn79+kFC2GVbbp3kprvuX3boimWt7nMx2bp1K0uXLp3xtctvmFzgaBbe8r3Y7vyPE+u/sPVfbH9bdvT9HwfjXP9xrju0V/8jjzxyU1VNzPTaoIP672m6GQsgySOB++Ypvh+oqtOA0+ZYZx2wDmBiYqJWr14932Hcz7vPuYB3XH7/w3Tdce3uczHZuHEjsx3j42cYlDxqTj5023bnf5xY/4Wt/2x/W2a6AGDG98/zRQE7+v6Pg3Gu/zjXHbqp/6BdlqcBHwUeleQtwOeAt+7Gfm8A9u9b3q8pkyRJGjsD/devqs5Jsgl4NhDgxVV11W7s9zLgwCQH0EvEjgF+cdA3J1kDrFm1atVuhKCdMej/0CVJ0s4bKCFL8gzgyqo6vVl+aJLDq+oLA7z3XGA1sG+SzcCbqurMJCcBlwJLgLOq6spBg66qDcCGiYmJEwd9jyQtdv7HRxpfgw6OeC9wWN/y1hnKZlRVx85SfglwyYD7lyRJGlmDjiFL9V2OWVX30eEs/0nWJFk3OTn6V/lJkqTRN2hCdm2S30jywObxOuDaNgPbkaraUFVrly1bXJeIS5Ik7YpBE7LXAM+kNwB/M705w9a2FZQkSdI4GfQqyy30roSUJEnSPBv0KstHAicCK/vfU1WvbiesOeNx2gtJkjQyBu2yvABYBnwSuLjv0QnHkEmSpFEy6JWSe1fVG1qNRJIkaUwN2kJ2UZLntRqJJEnSmBq0hex1wBuT3A3cTe/2SVVVD20tsh1wDJkkDWam2f/n+ybkknbfQC1kVfWQqnpAVT24qh7aLHeSjDXxOIZMkiSNjIESsvS8PMnvNsv7J3l6u6FJkiSNh0HHkJ0BHAH8YrO8FTi9lYgkSZLGzKBjyA6vqsOSfBmgqm5LsmeLcUmSdtJM48UkDYdBW8juSbIEKPjBRLH3tRaVJEnSGBk0ITsN+CjwqCRvAT4HvLW1qOaQZE2SdZOTk12FIEmSNG/m7LJM8gDga8DrgWfTm/LixVV1VcuxzaqqNgAbJiYmTuwqhlHW3+1x8qHbON5uEGmkOBWGtPjMmZBV1X1JTq+qpwJfXYCYJEmSxsqgXZafSvLzSdJqNJIkSWNo0ITsV4APA99PcnuSO5Lc3mJckiRJY2PQMWRHVdU/L0A8kiRJY2fOFrKqug94zwLEMjCvspQkSaNkKMeQeS9LSZI0Sgadqf9XgP8FbEvyPXpTX1SXNxjX/HBmb0kw89+Cmaa9cXoMqR0DJWRV9ZC2A5EkSRpXAyVkSX5qpvKq+uz8hiNJkjR+Bu2y/O2+5w8Gng5sAp417xFJkiSNmUG7LNf0LyfZH3hXGwFJkiSNm0GvspxuM/DE+QxEkiRpXA06huzdQDWLDwCeAnyppZgGiWcNsGbVqlVdhSBJkjRvBh1D9sW+59uAc7ucub+qNgAbJiYmTuwqBkmSpPkyaEJ2PvC9qroXIMmSJHtX1XfbC02SJGk8DJqQfQp4DrC1Wd4L+DjwzDaCkiQtTjNNIOtksdLuG3RQ/4OraioZo3m+dzshSZIkjZdBE7I7kxw2tZDkacBd7YQkSZI0XgbtsvxN4MNJvknvPpaPBl7WVlCSJEnjZNCJYS9L8gTgoKbo6qq6p72wJEmSxseg85C9Fjinqq5olh+e5NiqOqPV6CRJi54D/aXdN+gYshOr6jtTC1V1G+AcYJIkSfNg0IRsSZJMLSRZAuzZTkiSJEnjZdBB/ZcCH0ryf5vl1wAfayckSZKk8TJoQva79Loof61ZvhQ4s5WIBuC9LCVJ0ijZYZdlkj2S/CnwDeB44ADgfwIHzvXeNlXVhqpau2zZsq5CkCRJmjdztZD9GfAQ4PFVdQdAkocA7wDeDryu3fA0n2a6EkqSJHVvrlauF9C7wvKOqYLm+a8Cz2szMEmSpHExV0JWVVUzFN4LbFcuSZKknTdXl+VXkryiqj7YX5jk5cBX2wtLkjTMnCxW2jlzJWSvBT6S5NXApqZsAtgL+Nk2A5MkSRoXO0zIquoG4PAkzwKe1BRfUlWfaj0ySZKkMTHozcU/DXy65VgkSZLG0qATw2rIOMWFJEnDo7PJXSVJktRjQiZJktQxEzJJkqSOOYZMkrQgnJtMmp0tZJIkSR0zIZMkSeqYCZkkSVLHFs0YsiSPB/4PsKyqXtJ1PJKkbjjWTOOo1RayJGcl2ZLkimnlRyW5Osk1SU4BqKprq+qENuORJElajNrusjwbOKq/IMkS4HTgaOBg4NgkB7cchyRJ0qKVqmp3B8lK4KKqOqRZPgJ4c1U9t1k+FaCq/rhZPn9HXZZJ1gJrAZYvX/609evXtxr/llsnuemu+5cdumJZq/ucD5ffMDkv21m+F9vVf5xYf+tv/dvdx0x/T3fm79eg79+Vv9tbt25l6dKlO/2+UTDOdYf26n/kkUduqqqJmV7rYgzZCuD6vuXNwOFJHgG8BXhqklOnErTpqmodsA5gYmKiVq9e3Wqw7z7nAt5x+f0P03XHtbvP+XD8PN3L8uRDt21X/3Fi/a2/9W+3/jP9Pd2Zv1+Dvn9X/m5v3LiRtn9jFqtxrjt0U/9F85emqm4BXtN1HJIkSQuti4TsBmD/vuX9mrKBJVkDrFm1atV8xiVJWmAzXVEpjaMu5iG7DDgwyQFJ9gSOAS7cmQ1U1YaqWrts2eIfyyVJkjSXtqe9OBf4PHBQks1JTqiqbcBJwKXAVcB5VXVlm3FIkiQtZq12WVbVsbOUXwJc0ua+JUmShsWiGdS/MxxDJklqQ/+YtpMP3cbxp1zsXQK0IIbyXpaOIZMkSaNkKBMySZKkUWJCJkmS1LGhTMiSrEmybnJyfm4PJEmS1KWhTMgcQyZJkkbJUCZkkiRJo8SETJIkqWPOQzYCvBecpHHl3z+NiqFsIXMMmSRJGiVDmZBJkiSNEhMySZKkjpmQSZIkdcxB/ZKkseQFAVpMhrKFzEH9kiRplAxlQiZJkjRKTMgkSZI6ZkImSZLUMRMySZKkjpmQSZIkdcxpLyRJI2++p7iYaXvXve3587oPjZehbCFz2gtJkjRKhjIhkyRJGiUmZJIkSR0zIZMkSeqYCZkkSVLHTMgkSZI6ZkImSZLUMechGzLzPZeOJGl+dDk32WKfF22xx7cYDGULmfOQSZKkUTKUCZkkSdIoMSGTJEnqmAmZJElSx0zIJEmSOmZCJkmS1DETMkmSpI6ZkEmSJHXMhEySJKljJmSSJEkdMyGTJEnqmPeylCRpB+b7HsLe17HH43B/Q9lC5r0sJUnSKBnKhEySJGmUmJBJkiR1zIRMkiSpYyZkkiRJHTMhkyRJ6pgJmSRJUsdMyCRJkjpmQiZJktQxEzJJkqSOmZBJkiR1zIRMkiSpYyZkkiRJHTMhkyRJ6pgJmSRJUsdMyCRJkjq2R9cBTEmyD3AGcDewsarO6TgkSZKkBdFqC1mSs5JsSXLFtPKjklyd5JokpzTFPwecX1UnAi9sMy5JkqTFpO0uy7OBo/oLkiwBTgeOBg4Gjk1yMLAfcH2z2r0txyVJkrRopKra3UGyErioqg5plo8A3lxVz22WT21W3QzcVlUXJVlfVcfMsr21wFqA5cuXP239+vWtxr/l1kluuuv+ZYeuWNbqPqdcfsPkguxnR5bvxXb1HyfW3/pb/66j6M5irP9svz8z/V7szm/VTL99g5ppv7vzezbo9namvnO9f+vWrSxdunTg7Q3qyCOP3FRVEzO91sUYshX8sCUMeonY4cBpwHuSPB/YMNubq2odsA5gYmKiVq9e3V6kwLvPuYB3XH7/w3Tdce3uc8rxp1y8IPvZkZMP3bZd/ceJ9bf+1t/6Lyaz/f7M9HuxO79VM/32DWqm/e7O79mg29uZ+s71/o0bN9J2fjHdovmkVdWdwKu6jkOSJGmhdTHtxQ3A/n3L+zVlA0uyJsm6ycnuu/QkSZJ2VxcJ2WXAgUkOSLIncAxw4c5soKo2VNXaZcsWZiyXJElSm9qe9uJc4PPAQUk2JzmhqrYBJwGXAlcB51XVlW3GIUmStJi1Ooasqo6dpfwS4JJd3W6SNcCaVatW7eomJEmSFo2hvHWSXZaSJGmUDGVCJkmSNEpMyCRJkjo2lAmZ015IkqRR0vqtk9qU5NvA11vezb7AzS3vYzGz/tbf+o8v6z++9R/nukN79X9cVT1ypheGOiFbCEm+ONt9p8aB9bf+1t/6dx1HV8a5/uNcd+im/kPZZSlJkjRKTMgkSZI6ZkI2t3VdB9Ax6z/erP94s/7ja5zrDh3U3zFkkiRJHbOFTJIkqWMmZJIkSR0zIduBJEcluTrJNUlO6TqetiU5K8mWJFf0lf1Ikk8k+c/m34d3GWObkuyf5DNJvpLkyiSva8pH/hgkeXCSf03y703df78pPyDJF5rvwIeS7Nl1rG1KsiTJl5Nc1CyPTf2TXJfk8iT/luSLTdnIf/anJHlYkvOTfDXJVUmOGJf6JzmoOe9Tj9uT/Oa41B8gyW81f/uuSHJu8zdxQb//JmSzSLIEOB04GjgYODbJwd1G1bqzgaOmlZ0CfKqqDgQ+1SyPqm3AyVV1MPAM4LXNOR+HY/B94FlV9WTgKcBRSZ4B/AnwzqpaBdwGnNBdiAvidcBVfcvjVv8jq+opffMvjcNnf8pfAB+rqicAT6b3ORiL+lfV1c15fwrwNOC7wEcZk/onWQH8BjBRVYcAS4BjWODvvwnZ7J4OXFNV11bV3cB64EUdx9SqqvoscOu04hcBf9U8/yvgxQsZ00Kqqhur6kvN8zvo/UFewRgcg+rZ2iw+sHkU8Czg/KZ8JOs+Jcl+wPOB9zfLYYzqP4uR/+wDJFkG/BRwJkBV3V1V32FM6j/Ns4H/qqqvM1713wPYK8kewN7AjSzw99+EbHYrgOv7ljc3ZeNmeVXd2Dz/FrC8y2AWSpKVwFOBLzAmx6Dprvs3YAvwCeC/gO9U1bZmlVH/DrwLeD1wX7P8CMar/gV8PMmmJGubsrH47AMHAN8GPtB0Wb8/yT6MT/37HQOc2zwfi/pX1Q3A24Fv0EvEJoFNLPD334RMA6veHCkjP09KkqXA3wG/WVW39782ysegqu5tuiz2o9dC/IRuI1o4SV4AbKmqTV3H0qH/XlWH0Rum8dokP9X/4ih/9um1jhwGvLeqngrcybTuuRGvPwDNGKkXAh+e/too178ZG/cieon5Y4B92H74TutMyGZ3A7B/3/J+Tdm4uSnJfwNo/t3ScTytSvJAesnYOVX1kaZ4rI5B01XzGeAI4GFNEz6M9nfgJ4EXJrmO3vCEZ9EbUzQu9Z9qJaCqttAbP/R0xuezvxnYXFVfaJbPp5egjUv9pxwNfKmqbmqWx6X+zwG+VlXfrqp7gI/Q+5uwoN9/E7LZXQYc2FxlsSe9ZtwLO46pCxcCr2yevxK4oMNYWtWMGToTuKqq/rzvpZE/BkkemeRhzfO9gJ+mN4buM8BLmtVGsu4AVXVqVe1XVSvpfdc/XVXHMSb1T7JPkodMPQd+BriCMfjsA1TVt4DrkxzUFD0b+ApjUv8+x/LD7koYn/p/A3hGkr2b34Gp87+g339n6t+BJM+jN65kCXBWVb2l24jaleRcYDWwL3AT8Cbg74HzgMcCXwdeWlXTB/6PhCT/Hfgn4HJ+OI7ojfTGkY30MUjy4/QGrS6h9x+186rqD5I8nl6L0Y8AXwZeXlXf7y7S9iVZDfzvqnrBuNS/qedHm8U9gL+tqrckeQQj/tmfkuQp9C7o2BO4FngVzXeB8aj/PvQSk8dX1WRTNk7n//eBl9G72v7LwC/TGzO2YN9/EzJJkqSO2WUpSZLUMRMySZKkjpmQSZIkdcyETJIkqWMmZJIkSR0zIZMkSeqYCZkkSVLH/n8jP9q/61BISwAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# visualize results\n",
"plt.scatter(X[:, 0], X[:, 1], c=y_dbscan, s=50, cmap=\"inferno\")"
]
},
{
"cell_type": "markdown",
"id": "c118aedd-677f-43f5-87f4-5dca871843d9",
"metadata": {},
"source": [
"### Text Data Features"
]
},
{
"cell_type": "markdown",
"id": "5183ed93-0ca5-44ee-8928-8ce8d1abf5aa",
"metadata": {},
"source": [
"In the following, we will look at different representations of text and feature extraction methods for text. We will make use of the Yelp Dataset (https://www.kaggle.com/yelp-dataset/yelp-dataset): \"This dataset is a subset of Yelp's businesses, reviews, and user data. It was originally put together for the Yelp Dataset Challenge which is a chance for students to conduct research or analysis on Yelp's data and share their discoveries. In the most recent dataset you'll find information about businesses across 8 metropolitan areas in the USA and Canada.\" This example is adapted from the FeatEng book."
]
},
{
"cell_type": "markdown",
"id": "78930164-4e89-426f-b153-efdc4a1cf7ef",
"metadata": {},
"source": [
"
\n",
"Note: As the dataset is simply too large to store it on gitlab, please download the dataset directly using the link above, unzip it and store it in the data directory..
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# bar plot\n",
"plot = age_stats.plot(\n",
" kind=\"bar\",\n",
" xlabel=\"Age\",\n",
" ylabel=\"Count\",\n",
" legend=False,\n",
")\n",
"\n",
"# adapt ticks on x-axis\n",
"for ind, label in enumerate(plot.get_xticklabels()):\n",
" if ind % 10 == 0: # every 10th label is kept\n",
" label.set_visible(True)\n",
" else:\n",
" label.set_visible(False)"
]
},
{
"cell_type": "code",
"execution_count": 67,
"id": "86677c98-7415-4126-840c-a5bc5fffec5b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(36.29608938547486, 35.0)"
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# mean and median seem like best solution\n",
"derm.Age.mean(), derm.Age.median()"
]
},
{
"cell_type": "code",
"execution_count": 68,
"id": "f153af7d-d05e-4902-82be-45be358be237",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 40.0\n",
"1 50.0\n",
"dtype: float64"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"derm.Age.mode()"
]
},
{
"cell_type": "markdown",
"id": "e9888b03-63b3-466e-b8ac-8e862a8c5bb6",
"metadata": {},
"source": [
"Alternatively, this dataset was created in Turkey - we might also want to use domain knowledge and use the mean/median age in Turkey at the time of dataset creation."
]
},
{
"cell_type": "code",
"execution_count": 69,
"id": "c3aa2477-b374-411a-bc44-fb84d48e9d10",
"metadata": {},
"outputs": [],
"source": [
"# use sklearn's SimpleImputer\n",
"imputer = SimpleImputer(strategy=\"mean\")\n",
"# expects 2d array or dataframe\n",
"derm[\"Age_imputed\"] = imputer.fit_transform(pd.DataFrame(derm[\"Age\"]))"
]
},
{
"cell_type": "code",
"execution_count": 70,
"id": "b9cbaf00-26a8-4763-af9f-d6146408ee51",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
band-like infiltrate
\n",
"
Age
\n",
"
TARGET
\n",
"
Age_imputed
\n",
"
\n",
" \n",
" \n",
"
\n",
"
33
\n",
"
0
\n",
"
NaN
\n",
"
psoriasis
\n",
"
36.296089
\n",
"
\n",
"
\n",
"
34
\n",
"
0
\n",
"
NaN
\n",
"
pityriasis rosea
\n",
"
36.296089
\n",
"
\n",
"
\n",
"
35
\n",
"
0
\n",
"
NaN
\n",
"
seboreic dermatitis
\n",
"
36.296089
\n",
"
\n",
"
\n",
"
36
\n",
"
3
\n",
"
NaN
\n",
"
lichen planus
\n",
"
36.296089
\n",
"
\n",
"
\n",
"
262
\n",
"
0
\n",
"
NaN
\n",
"
cronic dermatitis
\n",
"
36.296089
\n",
"
\n",
"
\n",
"
263
\n",
"
0
\n",
"
NaN
\n",
"
cronic dermatitis
\n",
"
36.296089
\n",
"
\n",
"
\n",
"
264
\n",
"
0
\n",
"
NaN
\n",
"
cronic dermatitis
\n",
"
36.296089
\n",
"
\n",
"
\n",
"
265
\n",
"
0
\n",
"
NaN
\n",
"
cronic dermatitis
\n",
"
36.296089
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" band-like infiltrate Age TARGET Age_imputed\n",
"33 0 NaN psoriasis 36.296089\n",
"34 0 NaN pityriasis rosea 36.296089\n",
"35 0 NaN seboreic dermatitis 36.296089\n",
"36 3 NaN lichen planus 36.296089\n",
"262 0 NaN cronic dermatitis 36.296089\n",
"263 0 NaN cronic dermatitis 36.296089\n",
"264 0 NaN cronic dermatitis 36.296089\n",
"265 0 NaN cronic dermatitis 36.296089"
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"derm.loc[derm.Age.isnull()].iloc[:, -4:]"
]
},
{
"cell_type": "markdown",
"id": "5be55127-f078-4a6f-a4d8-80e7c9c9d4ee",
"metadata": {},
"source": [
"#### Locality Imputation"
]
},
{
"cell_type": "code",
"execution_count": 71,
"id": "c289112b-0a6b-438a-98f2-9c911f1dc9ea",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Array shape: (50, 8, 8)\n"
]
}
],
"source": [
"# load digits dataset (adopted, now missing a few pixels)\n",
"digits = np.load(os.path.join(data_dir, \"digits.npy\"))\n",
"print(\"Array shape:\", digits.shape)"
]
},
{
"cell_type": "code",
"execution_count": 72,
"id": "e1526d7e-8c7b-48dd-953a-1db09d8d050d",
"metadata": {},
"outputs": [],
"source": [
"# display digits\n",
"def show_digits(digits=digits, x=3, y=3, title=\"Digits\"):\n",
" \"Display of 'corrupted numerals'\"\n",
" if digits.min() >= 0:\n",
" newcm = cm.get_cmap(\"Greys\", 17)\n",
" else:\n",
" gray = cm.get_cmap(\"Greys\", 18)\n",
" newcolors = gray(np.linspace(0, 1, 18))\n",
" newcolors[:1,\n",
" ] = np.array([1.0, 0.9, 0.9, 1])\n",
" newcm = ListedColormap(newcolors)\n",
"\n",
" fig, axes = plt.subplots(\n",
" x,\n",
" y,\n",
" figsize=(x * 2.5, y * 2.5),\n",
" subplot_kw={\"xticks\": (), \"yticks\": ()},\n",
" )\n",
"\n",
" for ax, img in zip(axes.ravel(), digits):\n",
" ax.imshow(img, cmap=newcm)\n",
" for i in range(8):\n",
" for j in range(8):\n",
" if img[i, j] == -1:\n",
" s = \"╳\"\n",
" c = \"k\"\n",
" else:\n",
" s = str(img[i, j])\n",
" c = \"k\" if img[i, j] < 8 else \"w\"\n",
" _ = ax.text(j, i, s, color=c, ha=\"center\", va=\"center\")\n",
" fig.suptitle(title, y=0)\n",
" fig.tight_layout()"
]
},
{
"cell_type": "code",
"execution_count": 73,
"id": "6b4cf573-8f4d-4f8e-9c38-1528a875dce2",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAIUCAYAAAB7HQS+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADQR0lEQVR4nOzde1AUV/o38C+GGUURFBAveMMBXO5KQDEEwY0m3lg33mK5CBrxgrBEJBoviVhErTGIoBClQAhlDJVX1IiKWdikAoIrQtZBZSQaWREYEC8xgiggM/P+4Y8pUMYw3Wekic+nKrXQ2fnmOX1Ozxx6uvsYqNVqNQghhBBCOtGruwsghBBCiHDRRIEQQgghWtFEgRBCCCFa0USBEEIIIVrRRIEQQgghWhm+7F+WlJRAJBK9qlp00tjYyDSvoqKCaZ6pqSnTPCsrK2ZZBgYGzLL04enTpxg3bhzvHCGPX9b+97//Mc17+vQp07zhw4czy+rXrx+zLNZo7OquqamJad7169eZ5hkbGzPLGjNmDLMsAOilVDLNa1apOh2/L50oiEQiSCQSpoWwUlRUxDRv06ZNTPNmzZrFNO/zzz9nltW7d29mWfpw8+ZNJjlCHr+sbdy4kWne3bt3meZ98cUXzLJcXFyYZbFWXl7OJOd1Gru//PIL07yQkBCmeV5eXsyyMjIymGUBQJ/ffmOaV/bwYafb6asHQgghhGhFEwVCCCGEaEUTBUIIIYRoRRMFQgghhGjFe6KQk5MDFxcXODo6Ijo6WjBZAPDBBx9g6dKlWL58OVauXKnz66VSKYqKivD9999rtoWHhyMrKwunTp1CWloaLC0tOdXm4+ODjRs3YtOmTfD19eWU0V5ISAhsbGwwadIk3lkA+75gnceCkNvINyssLAxff/01EhISNNuWLVuGAwcOYN++fdi8ebNOdw9s2bIFZ86cwTfffKPZtnLlShw+fBiHDh3C3r17YWFhoXOdbfgeq+0JuV9ZEXobWecplUosWrQIYWFhOr82Pj4e165dw7lz5zTbPvnkE5SWliIvLw95eXmYOnVql/NYH1vtsdpvl+Ry/P3DD1/Y/sHq1bh45YrOebwmCkqlEmvXrkVmZiZkMhkyMjJQVlbW7VntxcXFISUlBUlJSTq/9tixY1i2bFmHbcnJyZg1axb8/Pzw008/4Z///KfOuUOHDsWkSZMQExODXbt2wdHRkdebLAAsXrwYR48e5ZXRhnVf6Ktv+RByG1lk/fjjj9i2bVuHbSUlJQgJCUFYWBgUCgXmz5/f5bysrCyEh4d32Hb48GH4+/sjICAA586dw4edvDHpgs+x2kbI/cqK0Nuoj32Wnp4Oa2trzq9dsGDBC9sTExPh4+MDHx8f/PDDD13OY31stWG531wdHdFbLEaRTKbZdkkuh1KphJuzs855vCYKxcXFkEgksLa2hlgsxoIFC3D69Oluz2KluLgYv//+e4dtjx490vxsZGQELotvDh48GLdu3cLTp0+hUqlw48YNuLq68qrVy8sLAwcO5JXRhnVfCLVvhdpGFllyuRwNDQ0dtslkMqhUKgDAtWvXdJqclpSUoL6+vsO2x48fa37u06ePTvXpi5D7lRWht5F1Xl1dHQoKCvD+++9zev358+fx4MEDzv/957E+ttqw3m/bIiIQGROj+T0yJgaR69ZxyuI1UaipqenwIBUrKysoFIpuz2rv448/xooVK3Dy5EneWW0iIiJQUFCAOXPmIC4uTufX19bWQiKRoG/fvhCJRHBwcMCAAQOY1ccX677QV9/yIeQ2vor9NW3aNPz3v//lnbN69WpkZmbivffe43UmAGBzrAq5X1kRehtZ50VHR+Ojjz5Cr15sL6kLCgpCfn4+4uPjmT4gj+uxxXq/2dvawtLcHGcLC1Ekk6GvkRGc7e05Zf2pL2ZMSEjAwYMH8cUXX+DEiRO4dOkSk9yYmBi8/fbbyMzMxJIlS3R+fV1dHX744QeEhIQgODgYCoWC05kJQrhYuHAhlEolcnNzeWclJiZizpw5yM7O5nS6tY2+jlXSs509exZmZmZwcHBgmpuamgo3NzdMnjwZt2/fxvbt25nksjy2WNgaHo6o2Fhs27MHkc99dagLXhOFYcOGobq6WvO7QqHg/KhhllltBg0aBAAYOHAgvL29mX+3mJmZienTp3N6bWFhIaKjo7Fv3z48fvwYd+7cYVobH6z7Qh99y5eQ26jP/fXOO+/Aw8MDMe1OSbKQnZ2NKVOmcH49q2NVyP3KitDbyDKvpKQEeXl5mDlzJjZu3Iji4mJs2bKFc21t7t69C5VKBbVajUOHDsHNzY13Jt9jSx9jTTJ6NEaPGAHzAQMw1saGcw6viYK7uztu3LiBiooKtLS0ICMjg/Oji1lmAcCTJ08036E+efIExcXFnC+GaW/06NGan6dNm8b5ka1tzw8fOHAgXF1dmZwGZoV1X7DOY0HIbdTX/nJzc8PcuXPx+eefo7m5mXfeiBEjND9PnjwZt27d4pTD8lgVcr+yIvQ2sswLCwtDdnY2zpw5A6lUCg8PD+zYsYNzbW0GDx6s+Xn27Nm8/4hkcWzpa6zdrKxEZU0Nr4yXrvXwhy82NERsbCz8/PygVCoRGBjI+RQRyywAePDgAT799FMAz64mnTp1KiZOnKhTRlxcHCZOnIiBAweioKAAe/fuha+vL8aMGQOVSgWFQoHPPvuMU33Lly9Hv379oFQqkZGRgSdPnnDKaZ9XUFCA+/fvw8HBARs3bkRAQACnLNZ9wTqPBSG3kUXWxx9/DGdnZ5iYmOCrr75Ceno65s+fD5FIpFk35Nq1a9i/f3+X8qKiouDm5oYBAwbg5MmTSE5OxltvvYWRI0dCrVbj9u3b2LVrl85tBdgcq22E3K+sCL2NQttnycnJ8PLygrm5OUpLSyGVSuHl5QVnZ2eo1WpUVlZinQ4X+bE+ttroY79l5+bC1toavXv3xqmcHPi9+y6nHAP1S74cl8vlgl2YhPWiUM/fBskXLQrF3c2bN2HP8aKb9oQ8flnr7PYvPoS8KNSECROYZbFWXl4OR0dH3jmv09hlvSjUX//6V6Z5PXlRqMlz5yI9IQEikQjzVqxA/nffvXT14LKHDzt97/1TX8xICCGEvI4ys7Ph5uSE4cOGYfCgQfDy8MCxrCxOWTRRIIQQQv5E1Go1pAkJ2NTugYAbgoOxJylJ87wHXdBEgRBCCPkTuVJWBv958zD4/+4mAgBzMzMsXbgQl69e1TmP18WMhBBCCBEWFwcHuHRyIeRKf39OeXRGgRBCCCFa9dgzCqzvUvjf//7HNO/5NSL4YvmI57y8PGZZgLCvQn9dsFrnow3r9Qx0WXTnj9B4617tHwrEwvjx45nmsT4WrnI4Vf+qNJmZsQ18+LDTzXRGgRBCCCFa0USBEEIIIVrRRIEQQgghWtFEgRBCCCFa0USBEEIIIVrxnijk5OTAxcUFjo6OiI6O7tYsqVSKoqIifP/995pt4eHhyMrKwqlTp5CWlgZLS8su56WkpKCurg5XrlzRbIuMjER1dTVkMhlkMhlmzJjR5bygoCAkJCRg586dmm39+vXDhg0b8MUXX2DDhg3o27dvt9T2vA8++ABLly7F8uXLsXLlSs45bViOE1ZY1ySkY6Gzsebh4YGdO3ciLS1N59UZOxtvABAaGoqysjKUlpZyXhTK09MTISEhCA0NxaRJkzhltCfkfmVFyG1sbm7GvHnz4OfnhxkzZmDv3r06Z7Acb/Hx8bh27RrOnTun2fbJJ5+gtLQUeXl5yMvLw9SpU7tcW2efM22WL1+O8vJyzndeCLVfeU0UlEol1q5di8zMTMhkMmRkZHBerpNF1rFjx164bTI5ORmzZs2Cn58ffvrpJ/yz3SMt/0haWhqmT5/+wvbY2FiMHz8e48eP73SwaJOfn/9CZ82ePRtXr17Fhg0bcPXqVcyePbtbautMXFwcUlJSkJSUxCuH5ThhhXVNQjsWOhtrCoUC+/btw7Vr13SuqbPx5uvrizlz5sDV1RVOTk7YvXu3zrmWlpZ48803kZSUhP3798POzg5mPG75EnK/siL0NorFYhw6dAinTp3CyZMncfbsWchkMp0yWI639PT0ThdNS0xMhI+PD3x8fHS6fbezzxkAGDp0KN5++20oFIouZ7Un5H7lNVEoLi6GRCKBtbU1xGIxFixYwPn+axZZxcXFLzy/4NGjR5qfjYyM8JLFMl+Qn5+P3/5gdS5dXLt2DY2NjR22ubm5IT8/X/Pfe/PNN7ulNn1iOU6EWpPQjoXOxlpNTQ1u377NqabOxltwcDCkUilaWloAcFtxctCgQaiursbTp0+hUqlQUVHBa2ldIfcrK0Jvo4GBAfr16wcAaG1tRWtr60tXLOwMy/F2/vx5PHjwQKf//st09jkDAFu2bMGuXbt0+ox5Pleo/cprolBTU4Phw4drfreysuI8m2KZ9byIiAgUFBRgzpw5iIuL450XGhqKS5cuISUlhfeDkExMTPDw/x5y8fDhQ5iYmAimto8//hgrVqzAyZMneeXos2+5Yl1TTzkWWLKzs4O3tzcKCwuRm5sLd3d3nTPq6uowatQoGBkZQSQSwc7OjtcxIOR+ZaUntFGpVMLPzw+enp7w8vLCuHHjeOUBbMZbe0FBQcjPz0d8fDxMTU15ZU2dOhV1dXW8lswWcr++FhczxsTE4O2330ZmZiaWLFnCK+vAgQOQSCQYN24camtrERMTw6hK/ljWlpCQgIMHD+KLL77AiRMncOnSJYaVkj8DQ0NDmJmZwdPTE+vXr8eRI0d0zrh37x4KCgoQGBiIJUuWoLa2lvNfZEQ43njjDZw6dQr5+fm4fPkyrl+/zjuTxXhrk5qaCjc3N0yePBm3b9/G9u3bOWf16dMHwcHBiI2N5ZwhdLwmCsOGDevwOE+FQgErK6tuz9ImMzOz0+/1dXHnzh2oVCqo1WokJyfzfpxsfX29ZjZramqK+vp6QdQ26P9WHRs4cCC8vb15fVf2KvpWV6xr6mnHAgvV1dU4fvw4gGenOVUqFSwsLHTOuXjxIhITE5Gamoqmpibcu3ePc01C7ldWelIbTUxMMHHiRJw9e5Z3FqvxBjz72qLtvfLQoUNwc3PjXNfIkSMxYsQIZGVlIS8vD0OGDMHJkyd1rk3I/cprouDu7o4bN26goqICLS0tyMjIwKxZs7o9q73Ro0drfp42bRrKy8t55Q0ZMkTz8/vvv4/S0lJeeTKZDN7e3gAAb29vXLx4sdtre/LkCR4/fqz5ubi4WOer5NvTV9/ywbqmnnAssHbixAlMmTIFAGBrawuxWMzpQ77t+2xTU1PY29u/cKW7LoTcr6wIvY3379/X/MHT1NSE//znPxgzZgznvDasxhsADB48WPPz7Nmzef0hdP36dUyYMEFzYeTt27fxt7/9TefahNyvvBaFMjQ0RGxsLPz8/KBUKhEYGMj5QiQWWXFxcZg4cSIGDhyIgoIC7N27F76+vhgzZgxUKhUUCgU+++yzLuelp6fD19cXFhYWqKqqQmRkJHx9fTFu3Dio1WpUVFRg1apVXc4LDg6Gvb09jI2NERcXh+PHj+P06dMICQnB5MmTcf/+fSQkJHRLbe09ePAAn376KYBn3zVOnToVEydO5JQFsB0nrLCuSWjHQmdjrbGxEUuWLEH//v2xbt06VFZWdvmWqc7GW2pqKlJTU3HlyhW0tLQgMDCQS3OxaNEiGBkZQaVSISsrC01NTZxyAGH3KytCb+Pdu3exYcMGqFQqqFQqzJgxA3/96191ymA53pKTk+Hl5QVzc3OUlpZCKpXCy8sLzs7OUKvVqKysxLp167pcW2efMxkZGTq1rzNC7lcD9Uu+EJTL5ZBIJJwL1SdHR0emeaxXj+R7LcTzvv76a2ZZQl898ubNm7C3t+edI+TxyxqLZ120x3K8AdBpgv5HNm/ezCyLtfLycibvTUIeu6xXj7S1tWWax3r1SJZ5crmcWZY+aHvvfS0uZiSEEEIINzRRIIQQQohWNFEghBBCiFY0USCEEEKIVrzuetBVH4aPHGZ98WFNTQ3TPNYX1LB8BKkuzzXvCtYXM74OWF8Q1t2PFf4jfJ+iR4SD75Nan8fnjqrOLFy4kGleREQE07yeiM4oEEIIIUQrmigQQgghRCuaKBBCCCFEK5ooEEIIIUQrmigQQgghRCveE4WcnBy4uLjA0dGxy8+Nf94luRx///DDF7Z/sHo1LuqwQExKSgrq6uo6LCoTGRmJ6upqyGQyyGQyzJgxg1ONCoUC8+fPh4+PD3x9fXHw4EFOOW347rewsDB8/fXXHdaG8PLywpdffonMzEzY2Njwqm/SpEkIDQ1FSEgI5s+fD0NDfjfIsBgnrLGuiVVec3Mz5s2bBz8/P8yYMQN79+7VOSM+Ph7Xrl3DuXPnNNs++eQTlJaWIi8vD3l5eZg6dWqX8zo7tgAgNDQUZWVlKC0txa5du3SuEwAePXoEqVSKNWvWICQkBL/88gunnDZC7VeWhN5GNzc3BAQEICAgADNnzsQbb7yh0+u3bNmCM2fO4JtvvtFsW7lyJQ4fPoxDhw5h7969nFeO5FubPo8FofYrr4mCUqnE2rVrkZmZCZlMhoyMDE6rcLk6OqK3WIwimUyz7ZJcDqVSCTdn5y7npKWldbqMdGxsLMaPH4/x48fj+++/17k+4NkCG1u3bkVeXh5Onz6NtLQ0zmuss9hvP/74I7Zt29Zh261bt7Bz507ezxPv378/PD09kZiYiC+//BK9evWCk5MT5zxW44Ql1jWxzBOLxTh06BBOnTqFkydP4uzZs5C1Oza6Ij09HQsWLHhhe2JiomaVO11uk+3s2PL19cWcOXPg6uoKJycn7N69W6ca2xw8eBBubm7Yv38/4uLiMHz4cE45gLD7lRWht9HY2Bjjx49Heno6Dh06BAMDA4wdO1anjKysLISHh3fYdvjwYfj7+yMgIADnzp3Dh538cfkqatPXsSDkfuU1USguLoZEIoG1tTXEYjEWLFjA+X7ubRERiIyJ0fweGRODSB1W9AKA/Px8/MbwWQ3tDR48GC4uLgCeDTYbGxvU1tZyymKx3+RyORoaGjpsq66uhkKh4FTT83r16gWRSKT53+f/W7pgOU5YYV0TyzwDAwPN0sutra1obW2FgYGBThnnz59n+uyNzo6t4OBgSKVStLS0AHi2aqCuGhsbIZfLMW3aNACASCSCsbEx5zqF3K+s9IQ29urVC4aGhjAwMIBIJEJjY6NOry8pKdEsVd3m8ePHmp/79OnTbbXp61gQcr/ymijU1NR0mP1bWVlx/qCyt7WFpbk5zhYWokgmQ18jIzgzWEEQeHZK6NKlS0hJScGAAQN451VVVaG0tBRubm6cXs9yv+lDQ0MDzp07h3Xr1mH9+vVoampCeXk55zwhtpd1TazzlEol/Pz84OnpCS8vL4wbN45zVntBQUHIz89HfHw8TE1NeWXZ2dnB29sbhYWFyM3N5fRQpbq6OpiammLfvn1Yu3Yt4uPjeS0zLfR+ZUHobXz06BF+/vlnBAUFYdWqVWhubsatW7c457W3evVqZGZm4r333kNSUpJgamNxLAi5XwV1MePW8HBExcZi2549iHzutBNXBw4cgEQiwbhx41BbW4uYdmctuGhsbERQUBCioqLQv39/JjUKTZ8+ffCXv/wFsbGxiI6Ohlgs1pxNIa/GG2+8gVOnTiE/Px+XL1/m/DVXe6mpqXBzc8PkyZNx+/ZtbN++nVeeoaEhzMzM4OnpifXr1+PIkSM6ZyiVSpSXl2P69OmIi4tDnz59cOzYMV51ke7Vu3dvSCQSpKSkICkpCSKRiMmy8cCzr87mzJmD7OxszJ8/XzC1sTgWhIzXRGHYsGEdHkWrUChgZWXFOU8yejRGjxgB8wEDMJbnxXht7ty5A5VKBbVajeTkZF6PG3769CmCgoIwd+5czJw5k3MO6/3GmkQiwYMHD/D48WOoVCpcvXoVI0eO5JwnxPayrklfbTQxMcHEiRNx9uxZ3ll3797VHAuHDh3ifEasTXV1NY4fPw7g2WlOlUql8wVmFhYWsLCw0HxP/NZbb/E6e9VT+pUPobdx5MiRqK+vx5MnT6BSqfDrr79i6NChnPM6k52djSlTpgimNhbHgpD7lddEwd3dHTdu3EBFRQVaWlqQkZGBWbNm8YnEzcpKVDJcd2HIkCGan99//32UlpZyylGr1YiIiICtrS1WrVrFqyZ97DeWHj58iBEjRkAkEgEAxowZw+k7tzZCbC/rmljm3b9/X/P9bFNTE/7zn/9gzJgxnGtrM3jwYM3Ps2fP5n1R3okTJzRv1ra2thCLxbh3755OGQMHDoSFhYXmDe3y5csYMWIE55qE3K+sCL2NDQ0NGDJkiOZOqZEjRzK5dqz9uJg8eTKnrwz0VRuLY0HI/crrnjdDQ0PExsbCz88PSqUSgYGBcHBw4JyXnZsLW2tr9O7dG6dycuD37rs6vT49PR2+vr6wsLBAVVUVIiMj4evri3HjxkGtVqOiooLzh3xRURGOHj0Ke3t7zW1lmzZtwjvvvKNzFov99vHHH8PZ2RkmJib46quvkJ6ejoaGBqxatQqmpqbYunUrbt68icjISJ3rq66uhlwux+rVq6FSqVBbW4uff/5Z55w2rMcJC6xrYpl39+5dbNiwASqVCiqVCjNmzMBf//pXnTKSk5Ph5eUFc3NzlJaWQiqVwsvLC87OzlCr1aisrMQ6HS4W7uzYSk1NRWpqKq5cuYKWlhYEBgbq2lQAwIoVK7Bnzx60trZiyJAhCAsL45QDCLtfWRF6G2/fvo1ff/0V/v7+UKlUuHPnzgu3Ev6RqKgouLm5YcCAATh58iSSk5Px1ltvYeTIkVCr1bh9+zanWxBZ1KavY0HI/WqgVqvV2v6lXC6HRCLhXOjz/mj1yMlz5yI9IQEikQjzVqxA/nffab3a24Dx6T+hrx7Z2a1uXI0fP55ZFgBs3ryZad7NmzeZfG/IevyyxHr1SNYreLK8YwIAMjMzmWW9q+MfEK9SeXk5HB0deecIeezu37+faR7r7/OFvHrkkydPmGXpg7b3XsFczJiZnQ03JycMHzYMgwcNgpeHB45lZXV3WYQQQshrTRATBbVaDWlCAjb985+abRuCg7EnKQkqlaobKyOEEEJeb4KYKFwpK4P/vHkYPGiQZpu5mRmWLlyIy1evdmNlhBBCyOuN3wP8GXFxcIBLJxdZrPT374ZqCCGEENJGEGcUCCGEECJMr/SMQsmdO8yyJk6cyCwLYH+XAmus71Qguvuju3Z0IfS7FFjz8PDo7hIII8uXL2eax3el2+ctXbqUad6SJUuY5vVEdEaBEEIIIVrRRIEQQgghWtFEgRBCCCFa0USBEEIIIVrRRIEQQgghWvGeKOTk5MDFxQWOjo6Ijo7mXZBSqcSiRYs4LQyzZcsWnDlzBt98841mW2hoKL799lscPnwYUqkUxsbGnGtj2VbW+23SpEkIDQ1FSEgI5s+fr1kdTSh5rNvLAquaLsnl+PuHH76w/YPVq3FRhwVn4uPjce3aNZw7d06z7ZNPPkFpaSny8vKQl5enWZDsj6SkpKCuru6FBW9CQ0NRVlaG0tJSnRbVYZ3XRqFQYP78+fDx8YGvry8OHjyoc8bzWI+1P/PY1UdeSEgIbGxsMGnSJN51AcCjR48glUqxZs0ahISE4JdfftHp9SyPKwAICgpCQkICdu7cqdnm4eGBnTt3Ii0tDdbW1jrV155Q+5XXREGpVGLt2rXIzMyETCZDRkYG76Vr09PTOe/orKwshIeHd9hWVFSEf/zjH/D390dVVRXnFe5YtpX1fuvfvz88PT2RmJiIL7/8Er169YKTk5Ng8vQxTvhiWZOroyN6i8Uoksk02y7J5VAqlXBzdu5yTnp6eqeLfyUmJsLHxwc+Pj744YcfupSVlpaG6dOnd9jm6+uLOXPmwNXVFU5OTti9e3eXa2Od18bQ0BBbt25FXl4eTp8+jbS0NFy/fl3nnDasx9qffezqI2/x4sU4evQo59c/7+DBg3Bzc8P+/fsRFxeH4cOH6/R6lscVAOTn57/woatQKLBv3z5cu3ZNp9raE3K/8pooFBcXQyKRwNraGmKxGAsWLMDp06c559XV1aGgoADvv/8+p9eXlJSgvr6+w7aioiIolUoAQGlpKSwtLTlls2wr6/0GAL169YJIJNL8b0NDg2Dy9NFevljXtC0iApExMZrfI2NiEKnDMs4AcP78eWbPQ8jPz8dvzz33ITg4GFKpFC0tLQCeLWfdXXltBg8eDBcXFwCAsbExbGxsUFtbq3NOG9b9+jqMXdZ5Xl5ezJ5L09jYCLlcjmnTpgEARCKRzmeFWR5XAHDt2jU0NjZ22FZTU4Pbt2/zyhVyv/KaKNTU1HSY3VlZWUGhUHDOi46OxkcffYRevfRz6YSfnx/Onz/P6bUs28p6vzU0NODcuXNYt24d1q9fj6amJpSXlwsmj3V7WWBdk72tLSzNzXG2sBBFMhn6GhnBmcFS2cCzU535+fmIj4+Hqakp5xw7Ozt4e3ujsLAQubm5cHd351UX67yqqiqUlpbCzc2Ncwbrfn0dxq4Q29imrq4Opqam2LdvH9auXYv4+Hg0NTUxyWZ1XLEi5H4VzMWMZ8+ehZmZGRw6WfOBhaVLl6K1tRX/+te/9JLfnfr06YO//OUviI2NRXR0NMRiseavNCHkvS62hocjKjYW2/bsQeRzX4FxlZqaCjc3N0yePBm3b9/G9u3bOWcZGhrCzMwMnp6eWL9+PY4cOcKrNpZ5jY2NCAoKQlRUFPr378+rLvLnoVQqUV5ejunTpyMuLg59+vTBsWPHeOeyPK5eB7wmCsOGDUN1dbXmd4VCASsrK05ZJSUlyMvLw8yZM7Fx40YUFxdjy5YtfMrTmDVrFry8vBAZGck5g2VbWWYBgEQiwYMHD/D48WOoVCpcvXoVI0eOFEwe6/ayoI+aJKNHY/SIETAfMABjGT2W9u7du1CpVFCr1Th06BCvv7arq6tx/PhxAM9OS6pUKlhYWHR73tOnTxEUFIS5c+di5syZnOsB2Pfr6zB2hdjGNhYWFrCwsMDYsWMBAG+99Ravs5ttWB5XrAi5X3lNFNzd3XHjxg1UVFSgpaUFGRkZmDVrFqessLAwZGdn48yZM5BKpfDw8MCOHTv4lAcA8PT0hL+/P9avX4/m5mbOOSzbyjILAB4+fIgRI0ZAJBIBAMaMGcPp+2J95bFuLwv6qulmZSUqa2oYVPjM4MGDNT/Pnj2b18VNJ06cwJQpUwAAtra2EIvFuHfvXrfmqdVqREREwNbWFqtWreJcSxvW/fo6jF0htrHNwIEDYWFhofnAu3z5MkaMGME7l+VxxYqQ+5XXPW+GhoaIjY2Fn58flEolAgMD9fbVQVdERUXBzc0NAwYMwMmTJ5GcnIyAgACIxWLs27cPwLMLGr/44guds1m2lfV+q66uhlwux+rVq6FSqVBbW4uff/5ZMHlCGyf6qik7Nxe21tbo3bs3TuXkwO/dd3V6fXJyMry8vGBubo7S0lJIpVJ4eXnB2dkZarUalZWVWNfFCyTT09Ph6+sLCwsLVFVVITIyEqmpqUhNTcWVK1fQ0tKi0x1ArPPaFBUV4ejRo7C3t9fcorZp0ya88847OmcB7Pv1dRi7rPOWL1+OgoIC3L9/Hw4ODti4cSMCAgI4561YsQJ79uxBa2srhgwZovOt8yyPK+DZRbz29vYwNjZGXFwcjh8/jsbGRixZsgT9+/fHunXrUFlZqfPtiELuVwO1Wq3W9i/lcjkkEgnnQp+n6/2vL7N69WpmWQCQm5vLNI+19vfsCs3mzZuZ5t28eRP2DC4EZD1+/2j1yMlz5yI9IQEikQjzVqxA/nffwcDAoNP/rxmP2007I/TVI2sYnmUR8kqv5eXlcHR05J3DeuyyxOfMbGfy8vKY5rFePXL27NnMspKSkphl6YO2917BXMxISE+WmZ0NNycnDB82DIMHDYKXhweOZWV1d1mEEMIbTRQI4UmtVkOakIBN//ynZtuG4GDsSUqCSqXqxsoIIYQ/migQwtOVsjL4z5uHwYMGabaZm5lh6cKFuHz1ajdWRggh/PF7gD8hBC4ODnDp5CKhlf7+3VANIYSwRWcUCCGEEKLVKz2jMI7jOgudeVfHW896ut9//51Z1oABA5hlvU6azMyYZd28eZNZFiD8Pn3+2fh8CPmuB6FieadCSkoKsywAWLdoEdM81uLj47u7hG5HZxQIIYQQohVNFAghhBCiFU0UCCGEEKIVTRQIIYQQohVNFAghhBCiFe+JQk5ODlxcXODo6KjzIhhtLsnl+PuHH76w/YPVq3HxyhXOtU2aNAmhoaEICQnB/PnzYWjI7yYPFm3VRxYA+Pj4YOPGjdi0aRN8fX155wl537HCuiaWeSEhIbCxscGkSZM4vT4lJQV1dXW48tzxExoairKyMpSWlmLXrl3dltdec3Mz5s2bBz8/P8yYMQN79+7llNNGyP3KipDGWmfc3NwQEBCAgIAAzJw5E2+88YbOGaw+F+Lj43Ht2jWcO3dOs+2TTz5BaWkp8vLykJeXp1mQTFes951Qxy6viYJSqcTatWuRmZkJmUyGjIwMTst1ujo6ordYjCKZTLPtklwOpVIJN2dnTrX1798fnp6eSExMxJdffolevXrBicdCPKzayjoLAIYOHYpJkyYhJiYGu3btgqOjIywsLDjnCXnfscK6JtZ5ixcvxtGjRzm/Pi0tDdOnT++wzdfXF3PmzIGrqyucnJywe/fubstrTywW49ChQzh16hROnjyJs2fPQtbuvUAXQu9XFoQ21p5nbGyM8ePHIz09HYcOHYKBgQHGjh2rcw6rz4X09HQsWLDghe2JiYnw8fGBj48PfvjhB53rA9juOyGPXV4TheLiYkgkElhbW0MsFmPBggU4ffo0p6xtERGIjInR/B4ZE4NIHZb+7EyvXr0gEok0/9vQ0MA5i2VbWWYBz9ZWv3XrFp4+fQqVSoUbN27A1dWVcx4g3H3HCuuaWOd5eXnxel5Afn4+fntutcvg4GBIpVK0tLQAAO7evdttee0ZGBigX79+AIDW1la0trZqXXXzjwi9X1kQ2ljrTK9evWBoaAgDAwOIRCLOz9Fg8blw/vx5va2uynLfCXns8poo1NTUYPjw4ZrfraysoFAoOGXZ29rC0twcZwsLUSSToa+REZx5LDXc0NCAc+fOYd26dVi/fj2amppQXl7OOY9lW1lmAUBtbS0kEgn69u0LkUgEBwcHXg/gEfK+Y4V1TUJs4/Ps7Ozg7e2NwsJC5Obmwt3dXTB5SqUSfn5+8PT0hJeXF8aNG8cp53XoVyHW1N6jR4/w888/IygoCKtWrUJzczNu3brFKYv150J7QUFByM/PR3x8PExNTZlk8iHksSuotR62hodj1SefQCwWIzYykldWnz598Je//AWxsbFoamrCBx98ABcXF1y+fJlRtcJRV1eHH374ASEhIWhuboZCoYBareac9zrtu9eJoaEhzMzM4OnpCQ8PDxw5cgRjxowRRN4bb7yBU6dOob6+HmvWrMH169dhZ2fHuTbSfXr37g2JRIKUlBQ0Nzdj9uzZsLe353zam+XnQpvU1FRER0dDrVZj8+bN2L59O/7ZbvVX0hGvMwrDhg1DdXW15neFQgErKyvOeZLRozF6xAiYDxiAsTY2fEqDRCLBgwcP8PjxY6hUKly9ehUjR47knMeyraz3GwAUFhYiOjoa+/btw+PHj3Hnzh3OWULed6ywrkmIbXxedXU1jh8/DuDZaUmVSsXrWhbWeQBgYmKCiRMn4uzZs5xe/zr0qxBram/kyJGor6/HkydPoFKp8Ouvv2Lo0KGc81h+LrS5e/cuVCoV1Go1Dh06BDc3Nya5fAh57PKaKLi7u+PGjRuoqKhAS0sLMjIyMGvWLD6RuFlZicqaGl4ZAPDw4UOMGDECIpEIADBmzBjO36ECbNuqj/1mbGwM4Nlz8F1dXfHf//6Xc5aQ9x0rrGsSYhufd+LECUyZMgUAYGtrC7FYjHv37nV73v3791FfXw8AaGpqwn/+8x/OZyZeh34VYk3tNTQ0YMiQIZo7pUaOHPnC9S26YvW50Gbw4MGan2fPnt3tF6gCwh67vL56MDQ0RGxsLPz8/KBUKhEYGAiHTpbb7ars3FzYWlujd+/eOJWTAz8eCz9VV1dDLpdj9erVUKlUqK2txc8//8w5j2VbWe83AFi+fDn69esHpVKJjIwMPHnyhHOWkPcdK6xrYp23fPlyFBQU4P79+3BwcMDGjRsREBDQ5denp6fD19cXFhYWqKqqQmRkJFJTU5GamoorV66gpaUFgYGB3ZbX3t27d7FhwwaoVCqoVCrMmDEDf/3rXzllCb1fWRDaWHve7du38euvv8Lf3x8qlQp37tx54bZaXfD9XEhOToaXlxfMzc1RWloKqVQKLy8vODs7Q61Wo7KyEus4XjjPct8JeewaqF/yZbZcLodEIuFc6PP6/MGscvLcuUhPSIBIJMK8FSuQ/913Wq9+3pqYyKwuANi8eTPTPNY2bNjALIv1SoOs993Nmzdhz+CCJdbjlyWWq/kBwl898tdff2WW1f4CLaEpLy+Ho6Mj7xzWY7cnrx6py+cCAJjxuJW7MyxXeu3duzezLH3Q9t4rmCczZmZnw83JCcOHDcPgQYPg5eGBY1lZ3V0WIYSQbkKfC8IgiImCWq2GNCEBm9pddbohOBh7kpKgUqm6sTJCCCHdgT4XhEMQE4UrZWXwnzcPgwcN0mwzNzPD0oULcfnq1W6sjBBCSHegzwXhEMRzFFwcHODSyUUWK/39u6EaQggh3Y0+F4RDEGcUCCGEECJMr/SMQgmPhwA9j+uiMa8K66vai4qKmGUtXLiQWRYhXXGV4aliId/1IFQx7dZL4Ovzzz9nlgUAERERTPPy8vKY5gn9ToVXgc4oEEIIIUQrmigQQgghRCuaKBBCCCFEK5ooEEIIIUQrmigQQgghRCveE4WcnBy4uLjA0dER0dHRvAtSKpVYtGgRwsLCdH5tWFgYvv76ayQkJGi2eXl54csvv0RmZiZseC5RyrKtISEhsLGxwaRJkzi9fsuWLThz5gy++eYbzbbQ0FB8++23OHz4MKRSqWZFSV3duXMHMTExmn82b97MednfNqzHCQusaxLS+EhJSUFdXd0Li/GEhoairKwMpaWl2LVrV7fltffo0SNIpVKsWbMGISEh+OWXXzjltBFyv7LCuiZPT0+EhIQgNDSU05jrSePtgw8+wNKlS7F8+XKsXLmSU0Z7LPtCqGOX10RBqVRi7dq1yMzMhEwmQ0ZGBu/lOtPT02Ftbc3ptT/++CO2bdvWYdutW7ewc+dOyOVyXnWxbuvixYtx9OhRzq/PyspCeHh4h21FRUX4xz/+AX9/f1RVVXFezc/S0hIRERGIiIhAeHg4xGIxnHgstKKPccIX65qENj7S0tIwffr0Dtt8fX0xZ84cuLq6wsnJCbt37+62vPYOHjwINzc37N+/H3FxcbxufxR6v7LAuiZLS0u8+eabSEpKwv79+2FnZwczMzOdMnrSeAOAuLg4pKSkICkpiXMGwLYvhDx2eU0UiouLIZFIYG1tDbFYjAULFuD06dOc8+rq6lBQUID333+f0+vlcjkaGho6bKuuroZCoeBcUxvWbfXy8sLAgQM5v76kpAT19fUdthUVFUGpVAIASktLYWlpyTm/za+//gpzc3Od3zjaY73vWGBdk9DGR35+Pn57brXW4OBgSKVStLS0AHi2vHN35bVpbGyEXC7HtGnTAAAikYjzmTBA+P3KAuuaBg0ahOrqajx9+hQqlQoVFRU6L0fcU8Ybayz7Qshjl9dEoaampsPs38rKiteHcnR0ND766CP06iW8SydYt1Xf/Pz8cP78ed45MpkM48eP55UhxH3HuiYhtvF5dnZ28Pb2RmFhIXJzc+Hu7t7teXV1dTA1NcW+ffuwdu1axMfHo6mpiXNNr0O/sq6prq4Oo0aNgpGREUQiEezs7GBiYsK7TiGOtzYff/wxVqxYgZMnT/KqiWVfCHnsCmKtBwA4e/YszMzM4ODggJ9//rm7y+nRli5ditbWVvzrX//ildPa2gq5XI5Zs2Yxqox0J0NDQ5iZmcHT0xMeHh44cuQIxowZ0615SqUS5eXlWLFiBcaOHYvk5GQcO3YM//jHPzjXRXRz7949FBQUIDAwEC0tLaitrYVareadK8TxBgAJCQkYNGgQHjx4gIiICIwaNQqurq6c63od8PrTfdiwYaiurtb8rlAoYGVlxSmrpKQEeXl5mDlzJjZu3Iji4mJs2bKFT3lMsWyrPs2aNQteXl6IjIzknfXLL79g+PDh6N+/P68cIe471jUJsY3Pq66uxvHjxwE8Oy2pUqlgYWHRrXkWFhawsLDA2LFjAQBvvfUWysvLOdf0OvSrPmq6ePEiEhMTkZqaiqamJty7d49vmYIcb8Czr1oAYODAgfD29uZ1HQDLvhDy2OU1UXB3d8eNGzdQUVGBlpYWZGRkcP7rMywsDNnZ2Thz5gykUik8PDywY8cOPuUxxbKt+uLp6Ql/f3+sX7+eyVoTLL52AIS571jXJMQ2Pu/EiROYMmUKAMDW1hZisZjXBwKLvIEDB8LCwkLzhnb58mWMGDGCc02vQ7/qo6Z+/foBAExNTWFvb//C3QZcCHG8PXnyBI8fP9b8XFxczPnieYBtXwh57PL66sHQ0BCxsbHw8/ODUqlEYGCgzhfBsPTxxx/D2dkZJiYm+Oqrr5Ceno6GhgasWrUKpqam2Lp1K27evMnpr23WbV2+fDkKCgpw//59ODg4YOPGjQgICOjy66OiouDm5oYBAwbg5MmTSE5ORkBAAMRiMfbt2wfg2QWNX3zxBaf6mpubcf36dcyfP5/T69sT2jjRR01CGx/p6enw9fWFhYUFqqqqEBkZidTUVKSmpuLKlStoaWnR6a4Y1nntrVixAnv27EFrayuGDBnC6dboNkLvVxb0UdOiRYtgZGQElUqFrKwsna8T6Snj7cGDB/j0008BPPvaa+rUqZg4caLOOW1Y9oWQx66B+iVfRsnlckgkEs6FPo/v/dHtffbZZ8yyACAjI4NpHuvVI9977z1mWaxXj1yzZg3TvJs3b8Le3p53DuvxyxLr8TFgwACmeaxlZmYyy3r33XeZZbFWXl4OR0dH3jmsx+7OnTuZZbFePZI11qtHTpgwgWmekGl77xXe7QWEEEIIEQyaKBBCCCFEK5ooEEIIIUQrmigQQgghRKtX+sClwYMHM8s6d+4csyzg2eOPWTp48CDTPJZYX3xICBE2Xe6Y+SM5OTnMsgDgwoULTPN8fHyY5i1ZsoRZ1iGplFkWADTxeLS+LuiMAiGEEEK0ookCIYQQQrSiiQIhhBBCtKKJAiGEEEK0ookCIYQQQrTiPVHIycmBi4sLHB0dER0dzTlHoVBg/vz58PHxga+vL6e7BuLj43Ht2rVO74gICQnBb7/9BjMeV4l+8MEHWLp0KZYvX46VK1fq/PqgoCAkJCR0eJxqv379sGHDBnzxxRfYsGED+vbt26WsLVu24MyZM/jmm28020JDQ/Htt9/i8OHDkEqlMDY21rnGNqz6VV95LAi5jSEhIbCxscGkSZM4vT4lJQV1dXUvLO4TGhqKsrIylJaWYteuXd2W196jR48glUqxZs0ahISE8H7Uu5D7lRWWNTU3N2PevHnw8/PDjBkzsHfvXp0zOns/WrlyJQ4fPoxDhw5h7969Oq30yHK8sR67nb2Pe3h4YOfOnUhLS+O8yNQluRx///DDF7Z/sHo1LnJcpIvVOOE1UVAqlVi7di0yMzMhk8mQkZHBeclOQ0NDbN26FXl5eTh9+jTS0tJw/fp1nTLS09OxYMGCF7ZbWVlhypQpqKqq4lRbe3FxcUhJSUFSUpLOr83Pz3+hs2bPno2rV69iw4YNuHr1KmbPnt2lrKysLISHh3fYVlRUhH/84x/w9/dHVVUV50V6WParPvJYEHobFy9ejKNHj3J+fVpaGqZPn95hm6+vL+bMmQNXV1c4OTlh9+7d3ZbX3sGDB+Hm5ob9+/cjLi4Ow4cP55QDCL9fWWBdk1gsxqFDh3Dq1CmcPHkSZ8+ehUwm0ymjs/ejw4cPw9/fHwEBATh37hw+7ORDUBuW44312O3sfVyhUGDfvn24du1al3Oe5+roiN5iMYra7ftLcjmUSiXcnJ11zmM5TnhNFIqLiyGRSGBtbQ2xWIwFCxbg9OnTnLIGDx4MFxcXAICxsTFsbGxQW1urU8b58+fx4MGDF7bv2LEDkZGReMn6V6/EtWvX0NjY2GGbm5sb8vPzATwbgG+++WaXskpKSlBfX99hW1FREZRKJYBnK0daWlpyqpNlv+ojjwWht9HLywsDBw7k/Pr8/Hz89ttvHbYFBwdDKpWipaUFAHD37t1uy2vT2NgIuVyOadOmAQBEIhGvM2FC71cWWNdkYGCgWWa6tbUVra2tMDAw0Cmjs/ejtuWcAaBPnz465bEcb6zHbmfv4zU1Nbh9+3aXM7TZFhGByJgYze+RMTGIXLeOUxbLccJrolBTU9Nh9m9lZQWFQsEnEgBQVVWF0tJSuLm58c6aMWMGamtrIZfLeWcBz5ayXrFiBU6ePMkkz8TEBA8fPgQAPHz4ECYmJkxy/fz8cP78eU6vZd2v+honfLwObXyenZ0dvL29UVhYiNzcXLi7u3d7Xl1dHUxNTbFv3z6sXbsW8fHxOi9x3N7r0K/6qEmpVMLPzw+enp7w8vLCuHHjeFb5zOrVq5GZmYn33nuP01nY9liOX9bHAiv2trawNDfH2cJCFMlk6GtkBGeOK+myHCev9MmMXdHY2IigoCBERUWhf//+vLKMjIywbt06zJ07l0ltCQkJGDRoEB48eICIiAiMGjUKrq6uTLJZWrp0KVpbW/Gvf/2ru0shAmJoaAgzMzN4enrCw8MDR44cwZgxY7o1T6lUory8HCtWrMDYsWORnJyMY8eO4R//+Afnuoju3njjDZw6dQr19fVYs2YNrl+/Djs7O965iYmJSExMREBAAObPn8/ribUsxy/rY4GlreHhWPXJJxCLxYiNjOzucgDwPKMwbNgwVFdXa35XKBSwsrLinPf06VMEBQVh7ty5mDlzJp/SAACjR4/GyJEjkZ+fj5KSEgwbNgy5ubmcT8kPGjQIADBw4EB4e3sz+a6yvr4epqamAABTU9MXTt/patasWfDy8kIkjwHGul9Z57HwOrTxedXV1Th+/DiAZ6clVSqVTheY6SPPwsICFhYWGDt2LADgrbfeQnl5OeeaXod+1WdNJiYmmDhxIs6ePcskr012djamTJnCK4Pl+GV9LLAkGT0ao0eMgPmAARhrY8M5h+U44TVRcHd3x40bN1BRUYGWlhZkZGRg1qxZnLLUajUiIiJga2uLVatW8SlLo6ysDGPHjsW4ceMwbtw41NTUwNfXF3fu3NE568mTJ5rv3J48eYLi4mLOV7e2J5PJ4O3tDQDw9vbGxYsXOWd5enrC398f69evR3NzM+cclv2qjzwWXoc2Pu/EiROaN2tbW1uIxWLcu3evW/MGDhwICwsLzRva5cuXMWLECM41vQ79yrqm+/fva/5AaWpqwn/+8x8mf12378fJkyfj1q1bvPJYjl/WxwJrNysrUVlTwyuD5Tjh9dWDoaEhYmNj4efnB6VSicDAQDg4OHDKKioqwtGjR2Fvb4+pU6cCADZt2oR33nmnyxnJycnw8vKCubk5SktLIZVKcfjwYU71PO/Bgwf49NNPATw7XTp16lRMnDhRp4zg4GDY29vD2NgYcXFxOH78OE6fPo2QkBBMnjwZ9+/fR0JCQpeyoqKi4ObmhgEDBuDkyZNITk5GQEAAxGIx9u3bB+DZBY1ffPGFbg0F237VRx4LQm/j8uXLUVBQgPv378PBwQEbN27UaWGf9PR0+Pr6wsLCAlVVVYiMjERqaipSU1Nx5coVtLS06HRXDOu89lasWIE9e/agtbUVQ4YMQVhYGKccQPj9ygLrmu7evYsNGzZApVJBpVJhxowZ+Otf/6pTRmfvR2+99RZGjhwJtVqN27dv63QLIsvxxnrsdvY+3tjYiCVLlqB///5Yt24dKisrOd+OmJ2bC1tra/Tu3RuncnLg9+67nHJYjhMD9UtuBZDL5ZBIJJyCO9PZHQlcOTo6MssCns0wWWK9eqSut4q+TG5uLrMsfbh58ybsOV7A0x7r8csSnzM+nRkwYADTPNYyMzOZZb3L8Y3zVSgvL2fy3sR67LY/Bc2Xv78/syyA/eqRrL3q1SMnz52L9IQEiEQizFuxAvnffaf1LhTWq0dqe++lJzMSQgghApCZnQ03JycMHzYMgwcNgpeHB45lZXV3WTRRIIQQQrqbWq2GNCEBm/75T822DcHB2JOUBJVK1Y2V0USBEEII6XZXysrgP28eBv/f3XUAYG5mhqULF+Ly1avdWJkAn6NACCGEvG5cHBzg0snFhisZXxPCBZ1RIIQQQohWr/SMAp9n1z8vLS2NWRYALFu2jGmel5cX0zwh36nQ57nnqAtFL6WSaW0srzDu3bs3syyA7ZXZAPD1118zzfvhhx+YZf2N8eN2WV85LkR8Ftp6Huv3IpZ3ZADPbtVkieWxMHr0aGZZALB582amedrQGQVCCCGEaEUTBUIIIYRoRRMFQgghhGhFEwVCCCGEaEUTBUIIIYRoxXuikJOTAxcXFzg6OnJeBEMfWQDw6NEjSKVSrFmzBiEhIfjll190er1UKkVRURG+//57zbbw8HBkZWXh1KlTSEtL02nJ6qCgICQkJGDnzp2abf369cOGDRvwxRdfYMOGDejbt69ONbZhve9Y5V2Sy/H3Dz98YfsHq1fj4pUrfErkTF81CelY6GyseXh4YOfOnUhLS9N55dOUlBTU1dXhynP7JzQ0FGVlZSgtLdVp0Z/Fixdjx44d2Lhxo2Zb3759sWbNGnz66adYs2YNjIyMdKqxJ/QrK0I93lnnNTc3Y968efDz88OMGTOwd+9enTOEfiy05+npiZCQEISGhmLSpEmcMtpj1Q+8JgpKpRJr165FZmYmZDIZMjIyUFZW1u1ZbQ4ePAg3Nzfs378fcXFxOt8idOzYsRdum0xOTsasWbPg5+eHn376Cf9s97jNP5Kfn/9CZ82ePRtXr17Fhg0bcPXqVcyePVunGgH2+45lnqujI3qLxSiSyTTbLsnlUCqVcHN25lwjH/qoSWjHQmdjTaFQYN++fbh27ZrONaWlpWH69Okdtvn6+mLOnDlwdXWFk5MTdu/e3eW8Cxcu4MCBAx22TZ06FdevX8f27dtx/fp1TJs2Tacahd6vrAj5eGedJxaLcejQIZw6dQonT57E2bNnIWvXv10h9GOhjaWlJd58800kJSVh//79sLOzgxmPW3dZ9gOviUJxcTEkEgmsra0hFouxYMECnD59utuzAKCxsRFyuVzzZiMSiWBsbKxzTb///nuHbY8ePdL8bGRkhJcsvvmCa9euobGxscM2Nzc35OfnA3g2oN98802damyrk+W+Y523LSICkTExmt8jY2IQuW4d5zwWWNcktGOhs7FWU1OD27dvc6opPz8fvz33TIrg4GBIpVK0tLQAeLZccVeVl5fj8ePHHbY5OzujqKgIwLNl5505fLgLuV9ZEfrxzjLPwMAA/fr1AwC0traitbVV60qK2gj9WGgzaNAgVFdX4+nTp1CpVKioqOC1fDjLfuA1UaipqenwV7qVlRUUCkW3ZwFAXV0dTE1NsW/fPqxduxbx8fFoamrinNdeREQECgoKMGfOHMTFxfHKMjExwcOHDwEADx8+hImJic4ZrPcd6zx7W1tYmpvjbGEhimQy9DUygjODZaT5YF2TkI8FfbGzs4O3tzcKCwuRm5sLd54PQurfvz/q6+sBAPX19ejfv7/OGULuV1aEfryzzlMqlfDz84Onpye8vLwwbtw4zln6wuJYqKurw6hRo2BkZASRSAQ7OztOnwdtWPbDn3atB6VSifLycqxYsQJjx45FcnIyjh07hn/84x+8s2NiYhATE4PVq1djyZIlnL43e91sDQ/Hqk8+gVgsRmxkZHeXA0CYNfUkhoaGMDMzg6enJzw8PHDkyBGMGTOmu8uifv2TeeONN3Dq1CnU19djzZo1uH79Ouzs7Lq7rA5YHAv37t1DQUEBAgMD0dLSgtraWp3OWOsTrzMKw4YN6/D4TYVCASsrq27PAgALCwtYWFhg7NixAIC33noL5eXlnPM6k5mZ+cJ3Vbqqr6+HqakpAMDU1FTzF5UuWO871nkAIBk9GqNHjID5gAEYa2PDK4sVljUJ+VjQl+rqahw/fhzAs9OcKpUKFhYWnPMaGho0f0GZmJigoaGBU45Q+5UVoR/v+tpnJiYmmDhxIs6ePcs7izVWx8LFixeRmJiI1NRUNDU14d69e5xrYtkPvCYK7u7uuHHjBioqKtDS0oKMjAzMmjWr27OAZ+tKWFhYaHbU5cuXMWLECM55bdo/q3vatGm8Jx8ymQze3t4AAG9vb1y8eFHnDNb7jnVem5uVlaisqeGdwxKrmoR8LOjLiRMnMGXKFACAra0txGIxrze20tJSTJgwAQAwYcKEF64q14UQ+5UVoR/vLPPu37+v+eOpqakJ//nPfwRx1up5rI6FtusxTE1NYW9vz+sYYNkPvL56MDQ0RGxsLPz8/KBUKhEYGMj54guWWW1WrFiBPXv2oLW1FUOGDEFYWJhOr4+Li8PEiRMxcOBAFBQUYO/evfD19cWYMWOgUqmgUCjw2WefdTkvODgY9vb2MDY2RlxcHI4fP47Tp08jJCQEkydPxv3795GQkKBrM5nvO330RXZuLmytrdG7d2+cysmB37vv8spjgWVNQjsWOhtrjY2NWLJkCfr3749169ahsrKyy7dMpaenw9fXFxYWFqiqqkJkZCRSU1ORmpqKK1euoKWlBYGBgV2uLzAwEDY2NjA2NkZUVBTOnDmDf//731i2bBk8PT3x4MEDfPXVVzq1uY1Q+5UVoR/vLPPu3r2LDRs2QKVSQaVSYcaMGfjrX/+qU4bQj4X2Fi1aBCMjI6hUKmRlZfG6ro5lPxioX/IliFwuh0Qi4VyoPuXk5DDNCw8PZ5rHevXIpKQkpnksdWWFxslz5yI9IQEikQjzVqxA/nffab16uezhQ9gzuNix7PJl2L/k9J8uNQHCXmVw5cqVTPNYrx6py23Ef2Rfu2cvdKY7+7W8vByOjo68c4T83sva67R6pC5/WHYF69Ujb9682el7Lz2ZkehdZnY23JycMHzYMAweNAheHh44lpVFNRHmqF8JYY8mCkSv1Go1pAkJ2NTuL8oNwcHYk5QElUpFNRFmqF8J0Q+aKBC9ulJWBv958zB40CDNNnMzMyxduBCXr16lmggz1K+E6Mef9jkKRBhcHBzg0skFNCv9/buhmmeEWBPhj/qVEP2gMwqEEEII0eqldz2UlJSgd+/er7IeQtDc3MzkMa00fsmrRmOX9GTaxu9LJwqEEEIIeb3RVw+EEEII0YomCoQQQgjRiiYKhBBCCNGKJgqEEEII0YomCoQQQgjRiiYKhBBCCNGKJgqEEEII0YomCoQQQgjRiiYKhBBCCNHqpYtClVy8iN6G7NaNUr3xBrOsu3fvMssCgKqqKqZ5rB+/6tDJYjdcGRgYMMvSh6dPnzJ7DK5IJOJfUA/A+gGrlZWVTPNGjRrFNE+oXoex+7///Y9pnlgsZpo3fPhwpnmvE23j96WzgN6GhrC3sGBWRJOZGbOs7OxsZlkAEBERwTRvzJgxTPMuXrzILEvoz5C/efMmkxyRSASJRMIkS+iam5uZ5n3xxRdM85KSkpjmCVV5eTmTHCGP3Y0bNzLNs7a2ZprHeuy+TrS999JXD4QQQgjRiiYKhBBCCNGKJgqEEEII0YrzROGSXI6/f/jhC9s/WL0aF69c4VUUIYQQQoSB80TB1dERvcViFMlkmm2X5HIolUq4OTtzyszJyYGLiwscHR0RHR3NtTQAwJ07dxATE6P5Z/PmzTh79qxOGSkpKairq8OVdhOfyMhIVFdXQyaTQSaTYcaMGV3Ok0qlKCoqwvfff6/ZFh4ejqysLJw6dQppaWmwtLTUqcY2ISEhsLGxwaRJkzi9/nks+0IfeSwIuY0ss1iMjaCgICQkJGDnzp2abR4eHti5cyfS0tJ4XZAm5H7QRx4LQmtjWFgYvv76ayQkJGi2LVu2DAcOHMC+ffuwefNm9OvXr8t5ixcvxo4dOzpcONm3b1+sWbMGn376KdasWQMjIyOd6wSEt+96Qm28vnrYFhGByJgYze+RMTGIXLeOU5ZSqcTatWuRmZkJmUyGjIwMlJWVca7N0tISERERiIiIQHh4OMRiMZycnHTKSEtLw/Tp01/YHhsbi/Hjx2P8+PEdPvT/yLFjx7Bs2bIO25KTkzFr1iz4+fnhp59+wj//+U+damyzePFiHD16lNNrn8e6L1jnsSDkNrKujcXYyM/Pf+GNRqFQYN++fbh27RrnXCH3gz7yWBBiG3/88Uds27atw7aSkhKEhIQgLCwMCoUC8+fP73LehQsXcODAgQ7bpk6diuvXr2P79u24fv06pk2bplONgDD3XU+ojddEwd7WFpbm5jhbWIgimQx9jYzgbG/PKau4uBgSiQTW1tYQi8VYsGABTp8+zac8jV9//RXm5uYw0/H2zPz8fPz2229MagCetfH333/vsO3Ro0ean42MjDjfD+/l5YWBAwfyKU+DdV/os2+FUhPLPNa1sRgb165dQ2NjY4dtNTU1uH37Nq9cIfeDPvJYEGIb5XI5GhoaOmyTyWRQqVQAno0fCx1utS8vL8fjx487bHN2dkZRUREAoKioCM4czlwLcd/1hNp4X8y4NTwcUbGx2LZnDyLDwznn1NTUdHhQhpWVFRQKBd/yADwbsOPHj2eSBQChoaG4dOkSUlJSMGDAAN55ERERKCgowJw5cxAXF8c7jy/WfaHPvuVKyG0U4v7SFyH3gz7yWOiJbZw2bRr++9//8sro378/6uvrAQD19fXo37+/zhlC3ndCro33REEyejRGjxgB8wEDMNbGhm8cc62trZDL5XB1dWWSd+DAAUgkEowbNw61tbWIaffVC1cxMTF4++23kZmZiSVLljCokhBChGHhwoVQKpXIzc3t7lIIR0xuj7xZWYnKmhpeGcOGDUN1dbXmd4VCASsrK76l4ZdffsHw4cM5zT47c+fOHahUKqjVaiQnJ2PChAlMcgEgMzOz02siXjXWfaGvvuVDyG0U4v7SFyH3gz7yWOhJbXznnXfg4eHB5A+qhoYGmJiYAABMTExe+KqjK4S874RcG++JQnZuLmytrTHO0RGncnI457i7u+PGjRuoqKhAS0sLMjIyMGvWLL7lMf/aYciQIZqf33//fZSWlvLKGz16tObnadOmMXsELB+s+0JffcuHkNsoxP2lL0LuB33ksdBT2ujm5oa5c+fi888/Z/KI8dLSUs0fZhMmTOhwN1pXCXnfCbk23is+7di3D+kJCRCJRJi3YgVmT5vGadEhQ0NDxMbGws/PD0qlEoGBgbwXQmpubsb169d1utq2vfT0dPj6+sLCwgJVVVWIjIyEr68vxo0bB7VajYqKCqxatarLeXFxcZg4cSIGDhyIgoIC7N27F76+vhgzZgxUKhUUCgU+++wzTrUuX74cBQUFuH//PhwcHLBx40YEBARwymLdF/roW76E3EbWtbEYG8HBwbC3t4exsTHi4uJw/PhxNDY2YsmSJejfvz/WrVuHyspKnW/BEnI/6COPBSG28eOPP4azszNMTEzw1VdfIT09HfPnz4dIJMLnn38O4NkFjfv37+9SXmBgIGxsbGBsbIyoqCicOXMG//73v7Fs2TJ4enriwYMH+Oqrr7qlrfrKE3JtBuqXXGZfdvnySxeFyszOxk/nziEuKgoA8MmOHfBwdcX82bM7/f+zXBSqqwOuq2hRKOG4efMm7DnePdOeXC4X7MI6rLFeFIrrbbravE6LQjk6OvLOEfLYXbBgAdM8WhRKOLS993L+6kGtVkOakIBN7d5QNgQHY09SkuaWGEIIIYT0bJwnClfKyuA/bx4GDxqk2WZuZoalCxfi8tWrTIojhBBCSPfifI2Ci4MDXDr5vmOlvz+vggghhBAiHLR6JCGEEEK0ookCIYQQQrR66VcPqjfeYHqnQvuV5/j65ptvmGUBzx52xNKcOXOY5pk+95x9PpoEftcD0d13333HNG/cuHFM88ifx1XG16CxXjsjPj6eaR7LO9jkcjmzrFeJzigQQgghRCuaKBBCCCFEK5ooEEIIIUQrmigQQgghRCveE4WcnBy4uLjA0dFR5+e8P2/SpEkIDQ1FSEgI5s+fD0ND3R7zIJVKUVRUhO+//16zLTw8HFlZWTh16hTS0tJgaWnJub5Hjx5BKpVizZo1CAkJwS+//KLT61NSUlBXV9dhMZPIyEhUV1dDJpNBJpNhxowZOmVeksvx9w8/fGH7B6tX4yKHRVPasOxXfeSxIOQ2ssyqra3F1q1bNf8EBwcjh8cCbsCzBX8CAgIQEBCAmTNn4o033uCcJeR+0EceC0JrY2fvvW2WL1+O8vJyDBw4sMt5nb1XAkBoaCjKyspQWlqKXbt2vfIsgH1b2xNav7bhNVFQKpVYu3YtMjMzIZPJkJGRgbKyMk5Z/fv3h6enJxITE/Hll1+iV69ecHJy0inj2LFjWLZsWYdtycnJmDVrFvz8/PDTTz/xeob9wYMH4ebmhv379yMuLg7Dhw/X6fVpaWmdLiMdGxuL8ePHY/z48Z0OvpdxdXREb7EYRTKZZtsluRxKpRJuzs46ZbVh2a/6yGNByG1kXdvQoUMRFRWFqKgobNu2DWKxGG5ubpzzjI2NMX78eKSnp+PQoUMwMDDA2LFjOWUJuR/0kceCENvY2Xsv8Gzsvf3221AoFDrldfZe6evrizlz5sDV1RVOTk7YvXv3K88C2Le1jRD7tQ2viUJxcTEkEgmsra0hFouxYMECXre69OrVCyKRSPO/uq43XlxcjN9//73DtkePHml+NjIywkvWwHqpxsZGyOVyTJs2DQAgEolgbGysU0Z+fj5+++03Tv/9l9kWEYHIduu9R8bEIHLdOs55rPuVdR4LQm6jPvfX1atXYWlpCYuXLPbWFb169YKhoSEMDAwgEonQyPH2XSH3gz7yWBBiGzt77wWALVu2YNeuXTq/73b2XhkcHAypVIqWlhYAwN27d195FsC+re1zhdavbXhNFGpqajr8VW1lZcV5NtXQ0IBz585h3bp1WL9+PZqamlBeXs6nPI2IiAgUFBRgzpw5iIuL45RRV1cHU1NT7Nu3D2vXrkV8fDyampqY1BcaGopLly4hJSUFAwYM0Pn19ra2sDQ3x9nCQhTJZOhrZARnHqsvsuxXfeSxIOQ26nN/XbhwARMnTuSV8ejRI/z8888ICgrCqlWr0NzcjFu3bnHKEnI/6COPhZ7SxqlTp6Kurk7nr2i1sbOzg7e3NwoLC5Gbmwt3d3dBZAFs2irkfhXMxYx9+vTBX/7yF8TGxiI6OhpisRguLi5MsmNiYvD2228jMzMTS5Ys4ZShVCpRXl6O6dOnIy4uDn369MGxY8d413bgwAFIJBKMGzcOtbW1iGl3ZkAXW8PDERUbi2179iAyPJx3XeTPp7W1FSUlJfDw8OCV07t3b0gkEqSkpCApKQkikYjJsuDkz6NPnz4IDg5GbGwss0xDQ0OYmZnB09MT69evx5EjRwSRpY+2Cg2vicKwYcNQXV2t+V2hUMDKyopTlkQiwYMHD/D48WOoVCpcvXoVI0eO5FPeCzIzMzu9RqArLCwsYGFhofku9q233mJyxuPOnTtQqVRQq9VITk7GhAkTOOVIRo/G6BEjYD5gAMba2PCqiWW/6iOPBSG3UV/76/Llyxg1ahRMTU155YwcORL19fV48uQJVCoVfv31VwwdOpRTlpD7QR95LPSENo4cORIjRoxAVlYW8vLyMGTIEJw8eZLXV17V1dU4fvw4gGen1VUqFec8llms2irkfuU1UXB3d8eNGzdQUVGBlpYWZGRkYNasWZyyHj58iBEjRkAkEgF49thMXb430mb06NGan6dNm8b5w33gwIGwsLDQ7PjLly9jxIgRvOsbMmSI5uf3338fpaWlnLNuVlaisqaGd00s+1UfeSwIuY362l8svnYAnn1NOGTIEM1dSSNHjuR87Y2Q+0EfeSz0hDZev34dEyZMgI+PD3x8fHD79m387W9/w7179zhnnjhxAlOmTAEA2NraQiwWc85jmcWqrULuV87LTAPPTt/ExsbCz88PSqUSgYGBcOhk6emuqK6uhlwux+rVq6FSqVBbW4uff/5Zp4y4uDhMnDgRAwcOREFBAfbu3QtfX1+MGTMGKpUKCoUCn332Gaf6AGDFihXYs2cPWltbMWTIEISFhen0+vT0dPj6+sLCwgJVVVWIjIyEr68vxo0bB7VajYqKCqxatYpTbdm5ubC1tkbv3r1xKicHfu++yykHYNuv+shjQcht1Mf+am5uhlwuR2BgIK8cALh9+zZ+/fVX+Pv7Q6VS4c6dOy/cetZVQu4HfeSxIMQ2dvbem5GRwbmmzt4rU1NTkZqaiitXrqClpaXLY5llFsC+rW2E2K9tDNQvuURTLpdDIpFwLvR5Ql4UivX3S6wXhVL/wUUok+fORXpCAkQiEeatWIH8776DgYFBp/9flgt96cPNmzeZfOfNevwK2bfffss0j/XdOWvWrGGaJ1Tl5eVwdHTknSPkscuife3973//Y5rH2uu0KJS2917BXMxIuMvMzoabkxOGDxuGwYMGwcvDA8eysrq7LEIIIX8CNFHo4dRqNaQJCdjU7kFSG4KDsScpCSqVqhsrI4QQ8mdAE4Ue7kpZGfznzcPgQYM028zNzLB04UJcZrxuPCGEkNcPr4sZSfdzcXCASycXqKz09++GagghhPzZ0BkFQgghhGj1Ss8oBAcHM8uKiIhglgWA1yI5nWF5pSwg/DsViG6am5uZ5iUmJjLN27x5M9O8Bw8eMM1jietKf6+rQe2+5mSB9V0PrPuT5XMzWB/3vXv3ZpqnDZ1RIIQQQohWNFEghBBCiFY0USCEEEKIVjRRIIQQQohWNFEghBBCiFa8Jwo5OTlwcXGBo6MjoqOjOecoFArMnz8fPj4+8PX1xcGDB3nVFRISAhsbG0yaNIlzhlQqRVFREb7//nvNtvDwcGRlZeHUqVNIS0uDpaVlt+W1x6ofekoeC0JuI9/xu2XLFpw5c6bDmigrV67E4cOHcejQIezdu5fXkr+PHj2CVCrFmjVrEBISgl9++YVTDuvjnnUeQGO3K1iPt5SUFNTV1b2w2FhoaCjKyspQWlqKXbt2dSkrPj4e165dw7lz5zTbPvnkE5SWliIvLw95eXmYOnVql2tbvHgxduzYgY0bN2q29e3bF2vWrMGnn36KNWvWwMjIqMt57bH43GqP1TjhNVFQKpVYu3YtMjMzIZPJkJGRgbKyMk5ZhoaG2Lp1K/Ly8nD69GmkpaXh+vXrnGtbvHgxjh49yvn1AHDs2DEsW7asw7bk5GTMmjULfn5++Omnn/DPdo9OftV5bVj2Q0/IY0HobeQ7frOyshAeHt5h2+HDh+Hv74+AgACcO3cOH374Ief8gwcPws3NDfv370dcXByGDx/OKYf1cc86j8Zu17Aeb2lpaZg+fXqHbb6+vpgzZw5cXV3h5OSE3bt3dykrPT0dCxYseGF7YmKiZmnoH374ocu1XbhwAQcOHOiwberUqbh+/Tq2b9+O69evY9q0aV3Oa4/F51YbluOE10ShuLgYEokE1tbWEIvFWLBgAU6fPs0pa/DgwXBxcQEAGBsbw8bGBrW1tZxr8/Ly4n0/bXFxMX7//fcO2x49eqT52cjICC9ZfFPvee1zWfVDT8hjQeht5Dt+S0pKUF9f32Hb48ePNT/36dOHc3ZjYyPkcrnmzVAkEsHY2JhTFuvjnnUejd2uYT3e8vPzX1jBNDg4GFKpFC0tLQCAu3fvdinr/PnzTJ/jUV5e3qFtAODs7IyioiIAQFFREZydnTlls/jcasNynPCaKNTU1HT4S8LKygqKP1gOuSuqqqpQWlrK/CFIrERERKCgoABz5sxBXFxct+ex7geh57HwOrSxM6tXr0ZmZibee+89JCUlccqoq6uDqakp9u3bh7Vr1yI+Ph5NTU28a2N93LPIE2K/9qSxy2K8tbGzs4O3tzcKCwuRm5sLd3d3XnlBQUHIz89HfHw8TE1NeWX1799fM1Gqr69H//79eeWxwLJfBXcxY2NjI4KCghAVFSWInd2ZmJgYvP3228jMzMSSJUsEl0eINomJiZgzZw6ys7Mxf/58ThlKpRLl5eWYPn064uLi0KdPHxw7doxXXayP+57wPvI6YDHe2hgaGsLMzAyenp5Yv349jhw5wjkrNTUVbm5umDx5Mm7fvo3t27fzqu3PjtdEYdiwYaiurtb8rlAoYGVlxTnv6dOnCAoKwty5czFz5kw+pb0SmZmZL3yP1h15rPtB6HksvA5tfJns7GxMmTKF02stLCxgYWGBsWPHAgDeeustlJeXc66F9XHPMk+I/doTxy6f8damuroax48fB/DstLpKpeJ8Qe7du3ehUqmgVqtx6NAh3mexGhoaYGJiAgAwMTFBQ0MDrzwWWPYrr4mCu7s7bty4gYqKCrS0tCAjI4Pzc7HVajUiIiJga2uLVatW8SlLr0aPHq35edq0abzeIFnlseyHnpDHwuvQxueNGDFC8/PkyZNx69YtTjkDBw6EhYWF5k3o8uXLHbJ1wfq4Z50nxH7tKWOX1Xhrc+LECc1kw9bWFmKxGPfu3eOUNXjwYM3Ps2fP5n2BamlpKSZMmAAAmDBhwgt3a3QHlv3Ka1EoQ0NDxMbGws/PD0qlEoGBgXDoZMnjrigqKsLRo0dhb2+vuVVl06ZNeOeddzjlLV++HAUFBbh//z4cHBywceNGBAQE6JQRFxeHiRMnYuDAgSgoKMDevXvh6+uLMWPGQKVSQaFQ4LPPPuu2vDYs+6En5LEg9DbyHb9RUVFwc3PDgAEDcPLkSSQnJ+Ott97CyJEjoVarcfv27S7fXtaZFStWYM+ePWhtbcWQIUMQFhbGKYf1cc86j8Zu17Aeb+np6fD19YWFhQWqqqoQGRmJ1NRUpKam4sqVK2hpaUFgYGCXspKTk+Hl5QVzc3OUlpZCKpXCy8sLzs7OUKvVqKysxLp167pcW2BgIGxsbGBsbIyoqCicOXMG//73v7Fs2TJ4enriwYMH+Oqrr7qc1x6Lz602LMeJgfoll9nL5XJIJBJOwZ1heeVp3759mWUB7FePZE0ul3d3Ca/MzZs3YW9vzzuH9fhlifUqcu+99x7TPNarR3p4eDDNY4nlaoPl5eVwdHTknSPksevr68s078KFC0zzWK8e6e/vzyzr888/Z5YFsF89Utt7r+AuZiSEEEKIcNBEgRBCCCFa0USBEEIIIVrRRIEQQgghWtFEgRBCCCFa8bo9Ulcsr0ZleQcFAPzvf/9jmjd79mymeSyvkmd9pSzR3Xfffcc0j8/CR5159913mebt3LmTWdaAAQOYZQHAukWLmGX1UiqZZQmVnZ0d0zzWdz2w/mxgeUcc6/fePs+th6EvdEaBEEIIIVrRRIEQQgghWtFEgRBCCCFa0USBEEIIIVrRRIEQQjpxSS7H3z/88IXtH6xejYsCWPSHEG1Yj13eE4WcnBy4uLjA0dER0dHRgslSKBSYP38+fHx84Ovri4MHD+qckZKSgrq6ug4rgUVGRqK6uhoymQwymQwzZszocl5YWBi+/vprJCQkaLZ5eXnhyy+/RGZmJmxsbHSusU1ISAhsbGwwadIkzhntsewLfeSxINQ21tbWYuvWrZp/goODkZOTo1NGfHw8rl27hnPnzmm2ffLJJygtLUVeXh7y8vI0iyZxwXLfeXp6IiQkBKGhoUzGr5ubGwICAhAQEICZM2fijTfe4JTj6uiI3mIximQyzbZLcjmUSiXcnJ1518mH0MZuUFAQEhISOtzd4uHhgZ07dyItLQ3W1tY65XX23gsAoaGhKCsrQ2lpaZcXmWKZ9TwWx2p7rPqV9djlNVFQKpVYu3YtMjMzIZPJkJGRwXm5TpZZwLOVs7Zu3Yq8vDycPn0aaWlpOt9ClpaWhunTp7+wPTY2FuPHj8f48ePx/fffdznvxx9/xLZt2zpsu3XrFnbu3Ml70afFixfj6NGjvDLasO4L1nksCLmNQ4cORVRUFKKiorBt2zaIxWKdb9FKT0/HggULXtiemJgIHx8f+Pj44IcffuBUH8u2Wlpa4s0330RSUhL2798POzs7mJmZccoCAGNjY4wfPx7p6ek4dOgQDAwMMHbsWM552yIiEBkTo/k9MiYGkTqsNKgPQhy7+fn5L3ywKRQK7Nu3D9euXdO5ps7ee319fTFnzhy4urrCyckJu3fvfuVZz2NxrLZh3a8sxy6viUJxcTEkEgmsra0hFouxYMECnD59utuzgGfrjbu4uAB49uZhY2OD2tpanTLy8/PxG8P7VOVyORoaGjpsq66uhkKh4J3t5eXF7DkVrPuCdR4LPaWNV69ehaWlJSwsLHR63fnz55nfT96GZVsHDRqE6upqPH36FCqVChUVFbyXce7VqxcMDQ1hYGAAkUiExsZGzln2trawNDfH2cJCFMlk6GtkBGcGK5vyIcSxe+3atRf2c01NDW7fvs2pps7ee4ODgyGVStHS0gIAuHv37ivPehmux2ob1v3KcuzymijU1NRg+PDhmt+trKw4f+ixzHpeVVUVSktLmT04IzQ0FJcuXUJKSgrzh78IAeu+0GffctVT2njhwgVMnDiRd06boKAg5OfnIz4+HqamppwyWLa1rq4Oo0aNgpGREUQiEezs7GBiYsIpCwAePXqEn3/+GUFBQVi1ahWam5tx69YtznkAsDU8HFGxsdi2Zw8iw8N5ZbHQU8Yua3Z2dvD29kZhYSFyc3Ph7u4uiKw2fI9VffQDq7H7p7+YsbGxEUFBQYiKikL//v155x04cAASiQTjxo1DbW0tYtqd2iGEpdbWVpSUlMDDw4NJXmpqKtzc3DB58mTcvn0b27dvZ5LLx71791BQUIDAwEAsWbIEtbW1UKvVnPN69+4NiUSClJQUJCUlQSQSwZ7nGQDJ6NEYPWIEzAcMwFge1xERfgwNDWFmZgZPT0+sX78eR44cEUQWwP5YZYXV2OX1COdhw4ahurpa87tCoYCVlVW3Z7V5+vQpgoKCMHfuXMycOZNXVps7d+5ofk5OTu72U+j6wLov9NG3fPWENl6+fBmjRo3i/Jf/89qfXj106BC+/fZbTjms23rx4kVcvHgRADB16lQ8fPiQc9bIkSNRX1+PJ0+eAAB+/fVXDB06lPc1MTcrK9EqkMcz94Sxqw/V1dU4fvw4gGen6VUqFSwsLHDv3r1uzQLYHKv66gcWY5fXGQV3d3fcuHEDFRUVaGlpQUZGBmbNmtXtWQCgVqsREREBW1tbrFq1inPO84YMGaL5+f3330dpaSmzbKFg3Res81joCW1k/bXD4MGDNT/Pnj2b84cn67b269cPAGBqagp7e/sXrk7XRUNDA4YMGQJDw2d/A40cOZL3dUbZubmwtbbGOEdHnOJxRTsrPWHs6sOJEycwZcoUAICtrS3EYjHnD3aWWQCbY1Uf/cBq7PI6o2BoaIjY2Fj4+flBqVQiMDCQ84VILLMAoKioCEePHoW9vb3mNrBNmzbhnXfe6XJGeno6fH19YWFhgaqqKkRGRsLX1xfjxo2DWq1GRUWFTpOQjz/+GM7OzjAxMcFXX32F9PR0NDQ0YNWqVTA1NcXWrVtx8+ZNREZG6tze5cuXo6CgAPfv34eDgwM2btyIgIAAnXMA9n3BOo8FobexubkZcrkcgYGBnF6fnJwMLy8vmJubo7S0FFKpFF5eXnB2doZarUZlZSXWcbwCmnVbFy1aBCMjI6hUKmRlZaGpqYlz1u3bt/Hrr7/C398fKpUKd+7c4TXxAIAd+/YhPSEBIpEI81aswOxp02BgYMArkw8hjt3g4GDY29vD2NgYcXFxOH78OBobG7FkyRL0798f69atQ2VlZZdv+evsvTc1NRWpqam4cuUKWlpaunxssMzqDN9jtY0+3idZjV0D9Uu+EJTL5ZBIJLwK1RfWV3QPGzaMaR7r1SMPHz7MLEvoq0fevHmT9/fKgLDHL9fT/tpw/dDXpqamhmleT109MjM7Gz+dO4e4qCgAwCc7dsDD1RXztRzfZffuwf7/7rbiQ8hjd+XKlUzzvv76a6Z5rH311VfMshYxXKkUePnqkbqOXQAoe/iw0/feP/3FjIQQwoVarYY0IQGb/vlPzbYNwcHYk5QElUrVjZUR8nKsxy5NFAghpBNXysrgP28eBg8apNlmbmaGpQsX4vLVq91YGSEvx3rs8rpGgRBC/qxcHBzg0sl3xCv9/buhGkK6jvXYpTMKhBBCCNGKJgqEEEII0arHfvXAal2DNr///jvTvPfee0+wednZ2cyyAOHfRcFKUVERs6xly5YxywKAf7a7aEmIPv/8c2ZZmZmZzLIAoInHIlTPU+lpfQ0hSUpKYprH+o6dkpISpnmsj1WWWN9FAS0PO6MzCoQQQgjRiiYKhBBCCNGKJgqEEEII0YomCoQQQgjRivdEIScnBy4uLnB0dOzyc7xfRRbrvJCQENjY2GDSpEmcM7Zs2YIzZ87gm2++0WwLDQ3Ft99+i8OHD0MqlcLY2PiVZz2PRVufx7pvWWBd0wcffIClS5di+fLlnB5zm5KSgrq6uhfWJggNDUVZWRlKS0uxa9euLmUtXrwYO3bswMaNGzXb+vbtizVr1uDTTz/FmjVrYGRkpHONbfjuO5Ztfd6jR48glUqxZs0ahISE4JdffuGU0+Z1GLtCz1MqlVi0aBHCwsJ45dTW1mLr1q2af4KDg5Gj42JJ+hy7LOprj1U/8JooKJVKrF27FpmZmZDJZMjIyOC8Ih3LLH3kLV68GEePHuX8egDIyspCeHh4h21FRUX4xz/+AX9/f1RVVXV5YRGWWc9j0db2WPeFkGuKi4tDSkoKpyvD09LSMH369A7bfH19MWfOHLi6usLJyQm7d+/uUtaFCxdw4MCBDtumTp2K69evY/v27bh+/TqmTZumc40Am33Hsq3PO3jwINzc3LB//37ExcVh+PDhnHKA12PsCj0PeLawk7W1Na8MABg6dCiioqIQFRWFbdu2QSwWw83NTacMfY5dFvW1YdkPvCYKxcXFkEgksLa2hlgsxoIFC3D69Oluz9JHnpeXF+9bMktKSlBfX99hW1FREZT/t1Z4aWkpLC0tX3nW81i0tT3WffFnrSk/P/+FJZGDg4MhlUrR0tICALh7926XssrLy/H48eMO25ydnTW3eBYVFcHZ2ZlTnSz2Hcu2ttfY2Ai5XK6ZBIlEIs5n1gBhjhOhv1eyzqurq0NBQQHef/99zhmduXr1KiwtLWFhYaHT6/Q1dlnV14ZlP/CaKNTU1HSYrVtZWUGhUHR7lj7yXgU/Pz+cP39ecFl8CbEv9FXTxx9/jBUrVuDkyZO8swDAzs4O3t7eKCwsRG5uLtzd3Tln9e/fXzO5rK+vR//+/Tnl6GvfsWhrXV0dTE1NsW/fPqxduxbx8fG8lq1+Hcau0POio6Px0UcfoVcvtpfUXbhwARMnTmSSxfI4bcO3Ppb9QBczCsTSpUvR2tqKf/3rX4LKIl2XkJCAgwcP4osvvsCJEydw6dIl3pmGhoYwMzODp6cn1q9fjyNHjjCoVJhYtFWpVKK8vBzTp09HXFwc+vTpg2PHjumhWvIqnD17FmZmZnDoZN0CPlpbW1FSUgIPDw8meayPU9b18cVrojBs2DBUV1drflcoFLCysur2LH3k6dOsWbPg5eWFyMhIQWWxIsS+0EdNg/5vpbaBAwfC29ubyXfZ1dXVOH78OIBnpxJVKhXnU5ENDQ0wMTEBAJiYmKChoYFTjr76k0VbLSwsYGFhgbFjxwIA3nrrLZSXl3Ou6XUYu0LOKykpQV5eHmbOnImNGzeiuLgYW7Zs4Vxbm8uXL2PUqFEwNTXlnQWwPU5Z1ceyH3hNFNzd3XHjxg1UVFSgpaUFGRkZmDVrVrdn6SNPXzw9PeHv74/169ejublZMFksCbEvWNf05MkTzTUBT548QXFxMZOLr06cOIEpU6YAAGxtbSEWi3Hv3j1OWaWlpZgwYQIAYMKECS9ctd1V+upPFm0dOHAgLCwsNG+Qly9fxogRIzjX9DqMXSHnhYWFITs7G2fOnIFUKoWHhwd27NjBubY2LL92ANgepwCb+lj2A6+1HgwNDREbGws/Pz8olUoEBgZyPkXEMksfecuXL0dBQQHu378PBwcHbNy4EQEBATplREVFwc3NDQMGDMDJkyeRnJyMgIAAiMVi7Nu3D8CzN/MvvvjilWbpo63tse4LFljX9ODBA3z66acAnp3+njp1qs4Henp6Onx9fWFhYYGqqipERkYiNTUVqampuHLlClpaWrp8J0tgYCBsbGxgbGyMqKgonDlzBv/+97+xbNkyeHp64sGDB/jqq690bifAZt+xbOvzVqxYgT179qC1tRVDhgzhdUvd6zB2hZ7HWnNzM+RyOefxpc+xy6K+Niz7wUCtVqu1/Uu5XA6JRMK50J6E9V/grBeFYknoi0LdvHkT9vb2vHNYj1+Wi0L5+PgwywLYLwrFZYL5Mnye2fA81otCvfvuu8yyysvL4ejoyDvndXrv5fuci+cJeVEorpNzbVgvCqXtvZcuZiSEEEKIVjRRIIQQQohWNFEghBBCiFY0USCEEEKIVjRRIIQQQohWNFEghBBCiFa8nqPwZ8L6Fj/WtyCyvP0tJiaGWRYAbN68mWmeULU91ZAFlotuAUB8fDzTPJa3grLG+tZS0r3GcVy8TnvgOLZ5DP3vf//r7hI4oTMKhBBCCNGKJgqEEEII0YomCoQQQgjRiiYKhBBCCNGK90QhJycHLi4ucHR0RHR0tGCyhJ4XEhICGxsbTJo0idPrg4KCkJCQgJ07d2q29evXDxs2bMAXX3yBDRs2oG/fvpzrmzRpEkJDQxESEoL58+fD0JDfda+s+4IF1jUplUosWrSI8yJE8fHxuHbtGs6dO6fZ9sknn6C0tBR5eXnIy8vD1KlTu5SVkpKCurq6F1aIDA0NRVlZGUpLS7Fr164u17ZlyxacOXMG33zzjWbbypUrcfjwYRw6dAh79+7VaVld1vW1x/fYet7rMHaFmHdJLsffP/zwhe0frF6NixxXPm3D51jV59j19PRESEgIQkNDmYxfVv3Ka6KgVCqxdu1aZGZmQiaTISMjA2VlZd2e1RPyFi9ejKNHj3J+fX5+/gsdP3v2bFy9ehUbNmzA1atXMXv2bE7Z/fv3h6enJxITE/Hll1+iV69ecHJy4lwr633Hgj5qSk9P57W0dHp6OhYsWPDC9sTERPj4+MDHxwc//PBDl7LS0tIwffr0Dtt8fX0xZ84cuLq6wsnJCbt37+5ybVlZWQgPD++w7fDhw/D390dAQADOnTuHDzt5U39V9bXH99hq73UYu0LNc3V0RG+xGEUymWbbJbkcSqUSbs7OnOsD+B2r+hq7lpaWePPNN5GUlIT9+/fDzs4OZmZmnGoE2PYrr4lCcXExJBIJrK2tIRaLsWDBApw+fbrbs3pCnpeXF69b5K5du4bGxsYO29zc3JCfnw/g2UTizTff5Jzfq1cviEQizf82NDRwzmK971hgXVNdXR0KCgrw/vvvc844f/48Hjx4wPn17eXn5+O3337rsC04OBhSqRQtLS0AgLt373Y5r6SkBPX19R22PX78WPNznz59urW+9vgeW+29DmNXyHnbIiIQ2e527siYGESuW8e5NoD/saqvsTto0CBUV1fj6dOnUKlUqKio4LU8N8t+4DVRqKmpwfDhwzW/W1lZQaFQdHtWT8jTBxMTEzx8+BAA8PDhQ873/Tc0NODcuXNYt24d1q9fj6amJpSXl3OuS4j7jnVN0dHR+Oijj9CrF/vLfoKCgpCfn4/4+HiYmppyzrGzs4O3tzcKCwuRm5sLd3d33rWtXr0amZmZeO+995CUlMQrSx/18fU6jF0h59nb2sLS3BxnCwtRJJOhr5ERnHkuQa+PY5XF2K2rq8OoUaNgZGQEkUgEOzs7Xs9uYdkPdDEjeUGfPn3wl7/8BbGxsYiOjoZYLIaLi0t3lyVYZ8+ehZmZGa/Zvzapqalwc3PD5MmTcfv2bWzfvp1zlqGhIczMzODp6Yn169fjyJEjvOtLTEzEnDlzkJ2djfnz5/PK0kd9pOfbGh6OqNhYbNuzB5HPff2lK30dqyzG7r1791BQUIDAwEAsWbIEtbW1UKvVTOvkitdEYdiwYaiurtb8rlAoYGVl1e1ZPSFPH+rr6zV/cZqamr5wqrirJBIJHjx4gMePH0OlUuHq1asYOXIk57qEuO9Y1lRSUoK8vDzMnDkTGzduRHFxMbZs2cKkzrt370KlUkGtVuPQoUNwc3PjnFVdXY3jx48DeHZaUqVS6XQB4stkZ2djypQpvDL0WR9Xf/ax2xPyJKNHY/SIETAfMABjbWw45wD6O1ZZjd2LFy8iMTERqampaGpqwr179zjXxLIfeE0U3N3dcePGDVRUVKClpQUZGRmYNWtWt2f1hDx9kMlk8Pb2BgB4e3vj4sWLnHIePnyIESNGQCQSAQDGjBnD+ftiQJj7jmVNYWFhyM7OxpkzZyCVSuHh4YEdO3YwqXPw4MGan2fPns3rIrMTJ05oPsxtbW0hFot5vRGNGDFC8/PkyZNx69Ytzln6qI+FP/vY7Ql5AHCzshKVNTW8MgD9Hausxm6/fv0APPtDz97e/oU7K3TBsh943fNmaGiI2NhY+Pn5QalUIjAwkPMpHZZZPSFv+fLlKCgowP379+Hg4ICNGzciICCgy68PDg6Gvb09jI2NERcXh+PHj+P06dMICQnB5MmTcf/+fSQkJHCqrbq6GnK5HKtXr4ZKpUJtbS1+/vlnTlkA+33HghBrSk5OhpeXF8zNzVFaWgqpVAovLy84OztDrVajsrIS67p4IVd6ejp8fX1hYWGBqqoqREZGIjU1Fampqbhy5QpaWloQGBjY5dqioqLg5uaGAQMG4OTJk0hOTsZbb72FkSNHQq1W4/bt2zrdEsa6vvb4HlvtCXGcCP29jXVedm4ubK2t0bt3b5zKyYHfu+9yzmJBn2N30aJFMDIygkqlQlZWFpqamjjXybIfDNQv+RJELpdDIpFwLvR11tzczDSP5aJQo0ePZpYFsF8U6ubNm7DnecESwH78/vLLL8yy/vrXvzLLAsDsbok2EydOZJp34cIFZlm///47syyA7YJw5eXlcHR05J3zOr339nnuDoLnTZ47F+kJCRCJRJi3YgXyv/sOBgYGWv//JXfuMK1v/PjxzLI+++wzZlnAq3vvpYsZCSGECFJmdjbcnJwwfNgwDB40CF4eHjiWldXdZb12aKJACCFEcNRqNaQJCdjU7mzqhuBg7ElKgkql6sbKXj80USCEECI4V8rK4D9vHgYPGqTZZm5mhqULF+Ly1avdWNnrh98D/AkhhBA9cHFwgEsnF9+t9Pfvhmpeb3RGgRBCCCFa9dgzCu1XTWRh7ty5TPO4PuxIG5bPl/d/TWbkvZTKP7yiWhd/+ctfmGXVMLgnvD2W7QQAMx6LgHWG5V07LO9SILorKipimsfnMcWdYX1nAUusP2deFTqjQAghhBCtaKJACCGEEK1ookAIIYQQrWiiQAghhBCtaKJACCGEEK14TxRycnLg4uICR0dHREdHCyYLACZNmoTQ0FCEhIRg/vz5MDTkd5OHUqnEokWLEBYWxrs2APjggw+wdOlSLF++HCtXrtTptfHx8bh27RrOnTv3wr8LCQnBb7/9BjMzM861+fj4YOPGjdi0aRN8fX0557Rh3bd8XJLL8fcPP3xh+werV+Mij9XahHgssGprZ+Ptk08+QWlpKfLy8pCXl4epU6d2OW/x4sXYsWMHNm7cqNnWt29frFmzBp9++inWrFkDIyOjLue1x3qsCWnsthF6G/m8t3WGz3tvWFgYvv766w6L5C1btgwHDhzAvn37sHnzZs2qjV2RkpKCurq6F1Z2DA0NRVlZGUpLS3VaIO15LD9nWPUrr4mCUqnE2rVrkZmZCZlMhoyMDM7L4LLMAoD+/fvD09MTiYmJ+PLLL9GrVy848bzlKz09HdbW1rwynhcXF4eUlBQkJSXpXMuCBQte2G5lZYUpU6agqqqKc01Dhw7FpEmTEBMTg127dsHR0ZHT2uptWPctX66OjugtFqNIJtNsuySXQ6lUws3ZmVOmUI8FVm3VNt4SExPh4+MDHx8f/PDDD13Ou3DhAg4cONBh29SpU3H9+nVs374d169fx7Rp07qc14b1WBPa2NVHTfpqI9f3ts7wee/98ccfsW3btg7bSkpKEBISgrCwMCgUCsyfP7/LeWlpaZg+fXqHbb6+vpgzZw5cXV3h5OSE3bt3c6oVYPc5w7JfeU0UiouLIZFIYG1tDbFYjAULFnC+359lVptevXpBJBJp/rehoYFzVl1dHQoKCvD+++/zqomV8+fPd7pi4I4dOxAZGYmXLAr6hwYPHoxbt27h6dOnUKlUuHHjBlxdXTnn6aNv+doWEYHImBjN75ExMYjs4hLOnRHyscCirdrGG1fl5eV4/Phxh23Ozs6ae/SLiorgzGHSxnrfCXHsvg5tbI/ve69cLn/hvV8mk2nWi7h27ZpOfwjl5+fjt+eeWxIcHAypVIqWlhYAwN27dznVyvJzhmW/8poo1NTUYPjw4ZrfraysoFAouj0LABoaGnDu3DmsW7cO69evR1NTE8rLyznnRUdH46OPPkKvXmwv6/j444+xYsUKnDx5knfWjBkzUFtbC7lcziuntrYWEokEffv2hUgkgoODAwYMGMA5j3XfsmBvawtLc3OcLSxEkUyGvkZGcOaxtLWQjwXWbW0vKCgI+fn5iI+Ph6mpKa+s/v37ax5UVl9fj/79++ucwXrfCXHs9pQ2snpv09d7b5tp06bhv//9L68MOzs7eHt7o7CwELm5uXB3d+eUw7KtLPu1xz6Z8Y/06dMHf/nLXxAbG4umpiZ88MEHcHFxweXLl3XOOnv2LMzMzODg4ICff/6ZWY0JCQkYNGgQHjx4gIiICIwaNYrzX+5GRkZYt24dkyd/1dXV4YcffkBISAiam5uhUCh4naEQqq3h4Vj1yScQi8WIjYzs7nL0Sh9tTU1NRXR0NNRqNTZv3ozt27czfQIj6blYvbfp6723zcKFC6FUKpGbm8srx9DQEGZmZvD09ISHhweOHDmCMWPG6JSh77bywWuiMGzYMFRXV2t+VygUsLKy6vYsAJBIJHjw4IHm9ObVq1cxcuRIThOFkpIS5OXloaCgAC0tLWhsbMSWLVuwY8cOzvUBwKD/WxVt4MCB8Pb2RllZGeeJwujRozFy5Ejk5+cDeLY/c3NzMXXqVNy5c0fnvMLCQhQWFgIAZs+ejd9//51TXW21sOxbViSjR2P0iBFobm7GWBsbXllCPhYAtm1t0/706qFDh/Dtt9/yymtoaICJiQnq6+thYmLC6atC1vtOiGO3J7SR1Xubvt57AeCdd96Bh4cHPv30U95Z1dXVOH78OIBnp/xVKhUsLCxw7969LmewbivLfuV1fsPd3R03btxARUUFWlpakJGRgVmzZnV7FgA8fPgQI0aMgEgkAgCMGTOG8/dGYWFhyM7OxpkzZyCVSuHh4cF7oD558kQziXny5AmKi4t5XcBSVlaGsWPHYty4cRg3bhxqamrg6+vLaZIAAMbGxgCeHeiurq68Ts2x7luWblZWopLBugtCPhbasGprm8GDB2t+nj17Nu8L4EpLSzFhwgQAwIQJE164qrwrWO87IY5dobeR5XubPt57AcDNzQ1z587F559/jubmZt55J06cwJQpUwAAtra2EIvFOk0SAPZtZdmvvM4oGBoaIjY2Fn5+flAqlQgMDIRDJ8uCvuos4NkMTy6XY/Xq1VCpVKitrRXU6ZwHDx5oZrJKpRJTp07FxIkTu/z65ORkeHl5wdzcHKWlpZBKpTh8+DCz+pYvX45+/fpBqVQiIyMDT5484ZzFum9Zyc7Nha21NXr37o1TOTnwe/ddzllCPhYA/m3tbLx5eXnB2dkZarUalZWVWKfDBZKBgYGwsbGBsbExoqKicObMGfz73//GsmXL4OnpiQcPHuCrr77StZnM950Qx67Q28j3vY21jz/+GM7OzjAxMcFXX32F9PR0zJ8/HyKRCJ9//jmAZxc07t+/v0t56enp8PX1hYWFBaqqqhAZGYnU1FSkpqbiypUraGlpQWBgoD6b1CUs+9VA/ZIvn+VyOSQSCedC9el1Wz3y73//O7Ms1qtHfvHFF0zzbt68CXsGF9uVXb4M+5dczTx57lykJyRAJBJh3ooVyP/uOxgYGGj9/zfxeC6Fvv3R6pG6tpX16pEsxxzr8cZSeXk5HB0deecI+b33dVs9kuUdILJ2tymzwHJFW0D7ey89mZG8ljKzs+Hm5IThw4Zh8KBB8PLwwLGsrO4uSy9ep7YSQtijiQJ57ajVakgTErCp3RX6G4KDsScpSXNv9Z/F69RWQoh+0ESBvHaulJXBf948DP6/K7MBwNzMDEsXLsTlq1e7sTL2Xqe2EkL040/7HAVCtHFxcIBLJxf1rGR87YYQvE5tJYToB51RIIQQQohWPfaMAp9HCndm3rx5TPNYe12uGmdJ9cYbgr5TgaXal9zBwAXLdR0A4MNOVrAkPZMui391RdTq1UzzWK9TwfJpo6zvUnhV6IwCIYQQQrSiiQIhhBBCtKKJAiGEEEK0ookCIYQQQrTiPVHIycmBi4sLHB0dER0dLZisO3fuICYmRvPP5s2bcfbsWZ0ypFIpioqK8P3332u2hYeHIysrC6dOnUJaWhosLS27La89Hx8fbNy4EZs2bYKvry+njPZY9oU+8lgQchtZZikUCsyfPx8+Pj7w9fXFwYMHdc5ISUlBXV3dCws1hYaGoqysDKWlpdi1axfnGpVKJRYtWoSwsDDOGW2E3K+sCL2Nnp6eCAkJQWhoKCZNmsQp45Jcjr93chHsB6tX46IOC4axHruLFy/Gjh07sHHjRs22vn37Ys2aNfj000+xZs0aGBkZdTmvPaH2K6+JglKpxNq1a5GZmQmZTIaMjAzOK8ixzAIAS0tLREREICIiAuHh4RCLxXDS8fn1x44dw7JlyzpsS05OxqxZs+Dn54effvpJpytiWee1GTp0KCZNmoSYmBjs2rULjo6OsHjJGgd/hHVfsM5jQchtZF2boaEhtm7diry8PJw+fRppaWm4fv26ThlpaWmYPn16h22+vr6YM2cOXF1d4eTkhN27d3OuMT09ndfqqW2E3K+sCL2NlpaWePPNN5GUlIT9+/fDzs4OZhzuPnJ1dERvsRhF7dZHuCSXQ6lUws3Zucs5rMfuhQsXcODAgQ7bpk6diuvXr2P79u24fv06pk2b1uW8NkLuV14TheLiYkgkElhbW0MsFmPBggWcb01hmfW8X3/9Febm5joP1uLiYvz+++8dtj169Ejzs5GREV6yppbe89oMHjwYt27dwtOnT6FSqXDjxg1Oa7+3r5NlX+izb4VSk5CPhcGDB8PFxQXAs+XDbWxsUFtbq1NGfn4+fntu4ang4GBIpVK0tLQAAOdl3Ovq6lBQUID333+f0+vbE3K/siL0Ng4aNAjV1dWa96OKigrOqxZui4hAZEyM5vfImBhE6rBKKcB+7JaXl2uW0W7j7OysWSyrqKgIzjpMZNoIuV95TRRqamowfPhwze9WVlZQKBTdnvU8mUyG8ePHM8kCgIiICBQUFGDOnDmIi4vr9rza2lpIJBL07dsXIpEIDg4OvJ4zwbov9Nm3XAm5jfrcX1VVVSgtLYWbmxvvLDs7O3h7e6OwsBC5ublwd3fnlBMdHY2PPvoIvXrxv2RKyP3KitDbWFdXh1GjRsHIyAgikQh2dnacV4i0t7WFpbk5zhYWokgmQ18jIzgzWFmW1dht079/f82KwfX19ejfv7/OGULu1z/9xYytra2Qy+W8/sJ+XkxMDN5++21kZmZiyZIl3Z5XV1eHH374ASEhIQgODoZCoeB0ZoL8uTU2NiIoKAhRUVGc3sieZ2hoCDMzM3h6emL9+vU4cuSIzhlnz56FmZkZ5784ifDcu3cPBQUFCAwMxJIlS1BbW8vr/WhreDiiYmOxbc8eRIaHM6mRxdh9nfCaKAwbNgzV1dWa3xUKBaysrLo9q71ffvkFw4cPZ/LG+LzMzMwXvvvqrrzCwkJER0dj3759ePz4Me7cucO5DtZ9oa++5UPIbdTH/nr69CmCgoIwd+5czJw5k1dWm+rqahw/fhzAs9OcKpVK52tjSkpKkJeXh5kzZ2Ljxo0oLi7Gli1bONck5H5lpSe08eLFi0hMTERqaiqamppw7949zlmS0aMxesQImA8YgLE2NrzqasNi7LbX0NCgOWtiYmKChoYGnTOE3K+8Jgru7u64ceMGKioq0NLSgoyMDMyaNavbs9pj/bXD6NGjNT9PmzYN5eXlgsgzNjYGAAwcOBCurq7473//y7km1n2hr77lQ8htZF2bWq1GREQEbG1tsWrVKs45zztx4gSmTJkCALC1tYVYLNb5AyEsLAzZ2dk4c+YMpFIpPDw8sGPHDs41CblfWekJbezXrx8AwNTUFPb29i/ccaCrm5WVqKyp4ZXRHoux215paSkmTJgAAJgwYQKn9gq5X3mt9WBoaIjY2Fj4+flBqVQiMDCQ8ylEllltmpubcf36dcyfP5/T6+Pi4jBx4kQMHDgQBQUF2Lt3L3x9fTFmzBioVCooFAp89tln3ZbX3vLly9GvXz8olUpkZGTgyZMnnHIA9n2hj77lS8htZF1bUVERjh49Cnt7e0ydOhUAsGnTJrzzzjtdzkhPT4evry8sLCxQVVWFyMhIpKamIjU1FVeuXEFLSwsCAwM518iKkPuVlZ7QxkWLFsHIyAgqlQpZWVloamrinJWdmwtba2v07t0bp3Jy4Pfuuzq9nvXYDQwMhI2NDYyNjREVFYUzZ87g3//+N5YtWwZPT088ePAAX331la7NFHS/Gqhf8uWRXC6HRCLhXKg+7d+/n2nel19+yTSPNZZ/xQh9UaibN2/CnsEFS0Iev6yxXsRp2LBhTPNk7W5x40vIC+uUl5fD0dGRd46Qx+7OnTuZ5v3RolCT585FekICRCIR5q1YgfzvvoPBSxZBM2D81RDLRaF66nvvn/5iRkIIIT1TZnY23JycMHzYMAweNAheHh44lpXV3WW9dmiiQAghRHDUajWkCQnY1O4v+g3BwdiTlASVStWNlb1+aKJACCFEcK6UlcF/3jwMHjRIs83czAxLFy7E5atXu7Gy1w+vixkJIYQQfXBxcIBLJxffrfT374ZqXm90RoEQQgghWtFEgRBCCCFavfT2yJKSEvTu3ftV1kMImpubMW7cON45NH7Jq0Zjl/Rk2sbvSycKhBBCCHm90VcPhBBCCNGKJgqEEEII0YomCoQQQgjRiiYKhBBCCNGKJgqEEEII0YomCoQQQgjRiiYKhBBCCNGKJgqEEEII0eqli0KVlJRAJBK9qlq61f/+9z+meU+fPmWaN3bsWKZ5Qvb06VNmT7cT6vj97bffmOYplUqmeazra2xsZJZlaMh2LTtnZ2dmWU+fPsX48eN55wh57N6+fZtp3v3795nmWVpaMs2zsLBglmVgYMAsCwB6MT7um1WqTt97X3rEiUQiSCQSpoUI1caNG5nm3b17l2lebm4u0zwhu3nzJpMcIY/f4uJipnmsP9iPHDnCNO/ChQvMsgYOHMgsC2A33gCgqqqKSY6Qx+7/+3//j2neN998wzQvJCSEad7y5cuZZbF+LHcfxsd92cOHnW6nrx4IIYQQohVNFAghhBCiFU0UCCGEEKIVTRQIIYQQohXviUJOTg5cXFzg6OiI6OhowWSxyAsLC8PXX3+NhIQEzbZly5bhwIED2LdvHzZv3ox+/fp1OW/Lli04c+ZMh4t3Vq5cicOHD+PQoUPYu3cv5ytshbbv9J3HglDbWFtbi61bt2r+CQ4ORk5ODq/a3NzcEBAQgICAAMycORNvvPGGTq9nPXZTUlJQV1eHK1eudNgeGhqKsrIylJaWYteuXV3Kio+Px7Vr13Du3DnNtk8++QSlpaXIy8tDXl4epk6d2uXa2gsJCYGNjQ0mTZrE6fX6ItSx28bT0xMhISEIDQ3ltO+kUimKiorw/fffv/Dvli9fjvLycs4XtfI9FtpjPT5Y9cMluRx///DDF7Z/sHo1Lj53zHUFr4mCUqnE2rVrkZmZCZlMhoyMDJSVlXV7Fqu8H3/8Edu2beuwraSkBCEhIQgLC4NCocD8+fO7nJeVlYXw8PAO2w4fPgx/f38EBATg3Llz+LCTzv0jQtx3+sxjQchtHDp0KKKiohAVFYVt27ZBLBbDzc2Nc23GxsYYP3480tPTcejQIRgYGOh8uy3rsZuWlobp06d32Obr64s5c+bA1dUVTk5O2L17d5ey0tPTsWDBghe2JyYmwsfHBz4+Pvjhhx+6XFt7ixcvxtGjRzm9Vl+EPHaBZ7cnvvnmm0hKSsL+/fthZ2cHMzMznTKOHTuGZcuWvbB96NChePvtt6FQKDjVxuJYaI/l+GDZD66OjugtFqNIJtNsuySXQ6lUwo3D7cC8JgrFxcWQSCSwtraGWCzGggULcPr06W7PYpUnl8vR0NDQYZtMJoNKpQIAXLt2Tae/okpKSlBfX99h2+PHjzU/9+nTR6f62ghx3+kzj4We0sarV6/C0tKS973cvXr1gqGhIQwMDCASiXR+rgHrsZufn//CLZ3BwcGQSqVoaWkB0PVbjM+fP48HDx7o9N/vKi8vL+a3Y/Il9LE7aNAgVFdX4+nTp1CpVKioqICDg4PONf3+++8vbN+yZQt27doFtVrNuT6+x0J7LMcH637YFhGByJgYze+RMTGIXLeOUxaviUJNTQ2GDx+u+d3KyorzTI9llj7yOjNt2jT897//5Z2zevVqZGZm4r333kNSUpLOrxf6vnsVfaGrntLGCxcuYOLEibwyHj16hJ9//hlBQUFYtWoVmpubcevWLd61AfzHbnt2dnbw9vZGYWEhcnNz4e7uzisvKCgI+fn5iI+Ph6mpKa8sIRH62K2rq8OoUaNgZGQEkUgEOzs7mJiYcM5rM3XqVNTV1eGXX37hnKHPY4Ev1v1gb2sLS3NznC0sRJFMhr5GRnC2t+eURRczcrRw4UIolUomD0JKTEzEnDlzkJ2drdNXGeTPrbW1FSUlJfDw8OCV07t3b0gkEqSkpCApKQkikQj2HN8wnsdy7BoaGsLMzAyenp5Yv349r4c+paamws3NDZMnT8bt27exfft2XrWRrrt37x4KCgoQGBiIJUuWoLa2ltcZAODZGavg4GDExsbyytHnsSBEW8PDERUbi2179iDyua8OdcFrojBs2DBUV1drflcoFLCysur2LH3ktffOO+/Aw8MDMe1O67CQnZ2NKVOm6Pw6oe87ffYFVz2hjZcvX8aoUaN4/zU8cuRI1NfX48mTJ1CpVPj1118xdOhQXpnP4zp226uursbx48cBPDsNq1KpOH/lcvfuXahUKqjVahw6dIjXNR5C0xPG7sWLF5GYmIjU1FQ0NTXh3r17vPJGjhyJESNGICsrC3l5eRgyZAhOnjyp8/h4FccCV/roB8no0Rg9YgTMBwzAWBsbzjm8Jgru7u64ceMGKioq0NLSgoyMDMyaNavbs/SR18bNzQ1z587F559/jubmZt55I0aM0Pw8efJkTqfBhL7v9NUXfPSENrL42gEAGhoaMGTIEM0aCSNHjmTyyGcWY7e9EydOaCYbtra2EIvFnD9gBg8erPl59uzZ3X7xLEs9Yey23Q1mamoKe3v7F+5u0dX169cxYcIEzcWpt2/fxt/+9jedx4e+jgUW9PU+ebOyEpU1NbwyeK2uYmhoiNjYWPj5+UGpVCIwMFDni1b0kcUq7+OPP4azszNMTEzw1VdfIT09HfPnz4dIJMLnn38O4NkFjfv37+9SXlRUFNzc3DBgwACcPHkSycnJeOuttzBy5Eio1Wrcvn27y7eEsW5rT8pjQehtbG5uhlwuR2BgIOeMNrdv38avv/4Kf39/qFQq3LlzR+c3btZjNz09Hb6+vrCwsEBVVRUiIyORmpqK1NRUXLlyBS0tLV1ue3JyMry8vGBubo7S0lJIpVJ4eXnB2dkZarUalZWVWMfxIq7ly5ejoKAA9+/fh4ODAzZu3IiAgABOWawIfewCwKJFi2BkZASVSoWsrCw0NTXp9Pq4uDhMnDgRAwcOREFBAfbu3YuMjAxeNQFsjoX2WI4PffRDdm4ubK2t0bt3b5zKyYHfu+9yyjFQv+TLI7lcLtiFSVjr7PYqPmhRKO5u3rzJ5HtDIY/fb7/9lmkeLQrFHetFoZycnHjnCHns7ty5k2keLQrF3R8tCjV57lykJyRAJBJh3ooVyP/uu5euYFn28GGn7710MSMhhBDyJ5OZnQ03JycMHzYMgwcNgpeHB45lZXHKookCIYQQ8ieiVqshTUjApn/+U7NtQ3Aw9iQlaZ4DpAuaKBBCCCF/IlfKyuA/bx4GDxqk2WZuZoalCxfi8tWrOufxupiREEIIIcLi4uAAl04uhFzp788pj84oEEIIIUSrHntGoaioiGke67UHWD+MiZCX0XXRnT+SmJjING+cpSWzLL9Vq5hlAWyvRH/ZFeV/FrJ2Cw0J0Zdffsk076effmKWxeIWz/aaGB/3ePiw0810RoEQQgghWtFEgRBCCCFa0USBEEIIIVrRRIEQQgghWtFEgRBCCCFa8Z4o5OTkwMXFBY6OjoiOjhZMFgB88MEHWLp0KZYvX46VK1fq/PqUlBTU1dW9sGhIaGgoysrKUFpaymkRJ+DZKpQBAQEICAjAzJkz8cYbb3DKacN63wk9jwWhtrG2thZbt27V/BMcHIycnBzB5LVRKpVYtGgRwsLCOL3+klyOv3/44QvbP1i9Ghd1WKgnLCwMX3/9NRISEjTbli1bhgMHDmDfvn3YvHmzZjVDLmjs/jHWfSCVSlFUVITvv//+hX+3fPlylJeXd3nND5ZZgH7Hm9D6tQ2viYJSqcTatWuRmZkJmUyGjIwMzsu5ssxqLy4uDikpKUhKStL5tWlpaZg+fXqHbb6+vpgzZw5cXV3h5OSE3bt365xrbGyM8ePHIz09HYcOHYKBgQHGjh2rc04b1vtO6HksCLmNQ4cORVRUFKKiorBt2zaIxWK4ublxro11Xpv09HRYW1tzfr2royN6i8Uoane73SW5HEqlEm7Ozl3O+fHHH7Ft27YO20pKShASEoKwsDAoFArMnz+fU400druGdR8cO3YMy5Yte2H70KFD8fbbb0OhUHRLFqC/8SbEfm3Da6JQXFwMiUQCa2triMViLFiwgPPzCFhmsZKfn//CqnzBwcGQSqVoaWkBwH2VyF69esHQ0BAGBgYQiURobGzkXCfrfSf0PBZ6ShuvXr0KS0tLWFhY8M5imVdXV4eCggK8//77vHK2RUQgst0zRyJjYhCp45LQcrkcDQ0NHbbJZDLNM+2vXbvGub00druGdR8UFxfj999/f2H7li1bsGvXLrxk0WO9ZgH6G29C7Nc2vCYKNTU1GD58uOZ3KysrnWdn+shq7+OPP8aKFStw8uRJ3lkAYGdnB29vbxQWFiI3Nxfu7u46Zzx69Ag///wzgoKCsGrVKjQ3N+PWrVuca2K974Sex0JPaeOFCxcwceJE3jms86Kjo/HRRx+hVy9+317a29rC0twcZwsLUSSToa+REZwZLDHe3rRp0/Df//6X02tp7LLBpw/aTJ06FXV1dfjll19418My63lc2yrkfu2xT2bsioSEBAwaNAgPHjxAREQERo0aBVdXV16ZhoaGMDMzg6enJzw8PHDkyBGMGTNGp4zevXtDIpEgJSUFzc3NmP3/27v3qKiq/3/8T4QZpBAVEBQUJS6GCMoEShIX00pR4h2IWR+EVLygRl5SKf2KCy8f8oYKb+ODgixSaomhYNiC7B0XTQULRNBQCURAUNTeIgEjM/P7w5gfCGPMOXucMV6PtVoLTsyT12Hvc2Z7Zp+zZ86EnZ2d2i9pEs3S3t6O4uJizpfNVZWXl5cHQ0NDjBkzBhcvXuRd18aVK7F43ToIhUJER0Twzuts9uzZkEgkyMnJYZpLeo9FG/Tv3x+hoaEIDg7mXQ/LrKf9U/sbr38OmJmZoaamRv59bW0tzM3N1Z7VYchfK2cNHjwY7u7uTN6Ia2pqkJaWBuDJpR2pVKr0ZSYLCws8fPgQLS0tkEqluH79OoYNG8a5JtZ/O03PY+FF2MeSkhKMHDkSAwcO5JXDOq+4uBi5ubnw9vZGeHg4CgsLsX79es55VqNGYdSIETAaNAijra151dbZlClT4OLiwutx6tR3+WHRBsCTc+aIESOQmZmJ3NxcDB06FBkZGZwu8bPM6ozvvmpyu/IaKDg7O+PGjRuoqqqCWCxGamoqZsyYofYsAGhpacGff/4p/7qwsJDXxKsOJ06cwOTJkwEANjY2EAqFaGxsVCqjqakJQ4cOhY7Okws6FhYW3eZCKIP1307T81h4EfZRUz92CAsLQ1ZWFk6dOoWoqCi4uLhg69atvDIrq6tRXVfHu7YOIpEIfn5+2Lx5M9ra2jjnUN/ljlUbAMC1a9cwYcIEeHp6wtPTE/X19Xj33XeVPveyzurAYl81uV15ffSgo6OD6Oho+Pj4QCKRIDg4GGN6WNryeWcBwIMHD7BhwwYAT2Z/Tp06VemTZEpKCry8vGBsbIxbt24hIiICiYmJSExMxOXLlyEWizldvqqvr8f169cRGBgIqVSKO3fudLsFUxms/3aanseCpu9jW1sbysrKmF0eZZ3HUlZODmwsLaGrq4uT2dnwefttpV7/6aefwsHBAQYGBjh06BBSUlIwa9YsCAQCbN68GcCTCWb79+9Xujbqu73Dug327NmDiRMnYvDgwThz5gz27t3LeUElllmA6vqbJrZrBy3ZM6Z8lpWVwcrKinOhqsR69UhPT0+meaxXj1y6dCnTPE1WWVkJOwYT2jS5/37zzTfqLuGZxo8fzzbvGatHevj5ISU2FgKBAP4LFyL/+PFnrsLIevVIliv6VVRUwN7enneOJvfdgIAApnlXrlxhmscay4Eh69UjWVN07qUnMxJC1CY9KwuisWMx3MwMpkOGwM3FBd9mZqq7LEJIJzRQIISohUwmQ1RsLD77+GP5trWhodgdHy+/J50Qon40UCCEqMXlq1cR6O8P07/uTgIAI0NDfDR7Nko0/HI0IX3JP/o5CoQQzeU4Zgwce/j8d1FgoBqqIYQo8sIOFNauXavuEp5p1Zw5TPNamaYRdZvDuH+wxuUOgWdZcvQos6ysrCxmWUR5Tk5OTPNY3Lbe2fbt25nmmZmZMcti/STIV199lWmeIvTRAyGEEEIUooECIYQQQhSigQIhhBBCFKKBAiGEEEIUooECIYQQQhTiPVDIzs6Go6Mj7O3tsWPHDrVmrV+/HqdOncKRI0fk2xYtWoTDhw8jOTkZe/fuVWqFsISEBDQ0NHRbh2H58uW4evUqSktL8cUXXyhV46WyMvxr/vxu299fsgS/8ljvgWU7vAh5LGjyPmpybcCTRXCCgoIQFBQEb29vaGtrK/V61sdqZ8uWLYO1tTVef/11Tq9/GvVd5bm6umLZsmVYvnw5p3b48MMPsXXrVoSHh8u3vfTSS1i6dCk2bNiApUuXQk9Pj1NtfPc1JiYG5eXlOHv2rHzbunXrUFpaitzcXOTm5mLq1KmcagOerE00Z84chIWFcc7owKpdeQ0UJBIJVqxYgfT0dBQVFSE1NZXzUs4ssjIzM7Fy5cou2w4fPozAwEAEBQXh7NmzmN/Dm7QiSUlJmDZtWpdtXl5e8PX1xbhx4zB27Fjs3LlTqRrH2dtDVyhEQVGRfNulsjJIJBKIHByUyurAsh1ehDwWNHkfNbk2ANDX14eTkxNSUlKQnJwMLS0tjB49WqkM1sdqZx9++CGOHTvG6bVPo76rPBMTE7z22muIj4/H/v37YWtrC0NDQ6UyLly4gC+//LLLtqlTp+LatWvYsmULrl27hrfeekvp2ljsa0pKSo/rXcTFxclXpDx9+rTStXXOZ3HLKMt25TVQKCwshJWVFSwtLSEUChEQEIDvvvtObVnFxcV4+PBhl20dS00DQP/+/ZXKy8/P77b8c2hoKKKioiAWiwEAd+/eVSoTADatXo2ITotGRezahYhVq5TO6cCyHV6EPBY0eR81ubYO/fr1g46ODrS0tCAQCNDc3KzU61kfq525ublh8ODBnF/fGfVd5Q0ZMgQ1NTV4/PgxpFIpqqqqlF5YqaKiokt/AAAHBwf5YoAFBQVw4PAPKxb7eu7cOTx48EDp390bDQ0NOHPmDN577z3eWSzblddAoa6uDsOHD5d/b25ujtraWrVnPW3JkiVIT0/HO++8g/j4eF5Ztra2cHd3x/nz55GTkwNnZ2elM+xsbGBiZIS88+dRUFSEl/T04MBjtUTWfztNz2NBk/dRk2sDgEePHuHixYsICQnB4sWL0dbWhps3b3LO64zlscoC9V3lNTQ0YOTIkdDT04NAIICtrS0MDAw453UYMGCAfHD58OFDDBgwQOkMVbZnSEgI8vPzERMTg4EDB3LK2LFjBz755BP068d/+iDLfe0Tkxnj4uLg6+uLrKwszJo1i1eWjo4ODA0N4erqijVr1uAoxyfObVy5EpHR0di0ezcinroES4gm09XVhZWVFRISEhAfHw+BQMBkWXCA7bFK1KOxsRFnzpxBcHAw5s6di9u3b0Mmk6m7LJVKTEyESCSCh4cH6uvrsWXLFqUz8vLyYGhoyHRZa1Z4DRTMzMxQU1Mj/762thbm5uZqz1IkKysLkydP5pVRU1ODtLQ0AE8u7UilUk6TrqxGjcKoESNgNGgQRltb86qJ9d9O0/NY0OR91OTaAMDCwgIPHz5ES0sLpFIprl+/jmHDhnHO6wmLY5UF6rvc/Prrr4iLi0NiYiJaW1vR2NjIKw8Ampqa5FcmDAwM0NTUpHSGqtrz7t27kEqlkMlkSE5OhkgkUjqjuLgYubm58Pb2Rnh4OAoLC7F+/XrONbHcV14DBWdnZ9y4cQNVVVUQi8VITU3FjBkz1J7V2YgRI+Rfe3h48L5EeuLECfkJzMbGBkKhkPNBUFldjeq6Ol71AOz/dpqex4Im76Mm1wY8OWEPHToUOjpPloqxsLDoNpeHC9bHKgvUd7l5+eWXAQADBw6EnZ1dtzvHuCgtLcWECRMAABMmTOCUqar2NDU1lX89c+ZMTpMGw8LCkJWVhVOnTiEqKgouLi7YunUr55pY7iuvRaF0dHQQHR0NHx8fSCQSBAcHc75swiIrMjISIpEIgwYNQkZGBg4cOIBJkybBwsICMpkM9fX1St3OmJKSAi8vLxgbG+PWrVuIiIhAYmIiEhMTcfnyZYjFYgQHByu7qwCArJwc2FhaQldXFyezs+Hz9tuccgC27fAi5LGgyfuoybUBQH19Pa5fv47AwEBIpVLcuXNH6ZM262O1swULFuDMmTO4d+8exowZg/DwcAQFBXHKor7LzZw5c6CnpwepVIrMzEy0tiq3rF1wcDCsra2hr6+PyMhInDp1Cj/88APmzZsHV1dXPHjwAIcOHVK6Lhb7euDAAbi5ucHIyAilpaWIioqCm5sbHBwcIJPJUF1djVU8JqezwrJdtWTP+PCorKwMVlZWnAtVJS8vL6Z5Fy5cYJon+5tJIx5+fkiJjYVAIID/woXIP34cWlpaCn++Vcnbi15klZWVTD7z1uT+q+lYrx7JdS5PT1ivHqmrq8ssq6KiAvb29rxzNLnvbtu2jWneH3/8wTRPk1eP/M9//sMsC2C/eqSic2+fmMyoadKzsiAaOxbDzcxgOmQI3Fxc8G1mprrLIoQQQrqhgcJzJpPJEBUbi88+/li+bW1oKHbHx0MqlaqxMkIIIaQ7Gig8Z5evXkWgvz9MhwyRbzMyNMRHs2ej5MoVNVZGCCGEdMdrMiNRnuOYMXDsYULJosBANVRDCCGEPBtdUSCEEEKIQi/sFQUuayw8y8SJE5nm9aW7FPqK3377jVkW69nPrHF5stzzkpubyzTvbR63JvdFXG81VcTGxoZpXmVlJdM8VuuGAMB4ExNmWQCg3E2n3NEVBUIIIYQoRAMFQgghhChEAwVCCCGEKEQDBUIIIYQoRAMFQgghhCjEe6CQnZ0NR0dH2NvbY8eOHWrNioqKQkFBAb7//vtu/2/BggWoqKhQagbr+vXrcerUKRw5ckS+bdGiRTh8+DCSk5Oxd+9eTktMA2z/bn0xjwXWNUkkEsyZMwdhYWG8s0QiEYKCghAUFARvb29oa2urNS8mJgbl5eU4e/asfNu6detQWlqK3Nxc5ObmYurUqWrL6+zRo0eIiorC0qVLsWzZMt53q/SFvssyr62tDf7+/vDx8cH06dOxd+9epTMSEhLQ0NDQbbGx5cuX4+rVqygtLe31omFhYWH46quvEBsbK982b948fPnll9i3bx8+//xz+WqXvcH6fabDpbIy/Gv+/G7b31+yBL9yXH2TVbvyGihIJBKsWLEC6enpKCoqQmpqKqflNVllffvtt5g3b1637cOGDcMbb7yB2r9ZqOlpmZmZWLlyZZdthw8fRmBgIIKCgnD27FnM76Fh/w7Lv1tfzGNBFTWlpKTA0tKSd236+vpwcnJCSkoKkpOToaWlhdGjR6s1LyUlBQEBAd22x8XFwdPTE56enjh9+rTa8jo7ePAgRCIR9u/fjz179mD48OGccoC+0XdZ5wmFQiQnJ+PkyZPIyMhAXl4eioqKlMpISkrCtGnTumzz8vKCr68vxo0bh7Fjx2Lnzp29yvrxxx+xadOmLtuKi4uxbNkyhIWFoba2FrNmzep1bazfZzqMs7eHrlCIgk5/q0tlZZBIJBA5OCidx7JdeQ0UCgsLYWVlBUtLSwiFQgQEBOC7775TW1ZhYWGPK5GtX78eX3zxBZ6xUGaPiouL8fDhwy7b/vzzT/nX/fv3Vyqvc52s/m59MY8F1jU1NDTgzJkzeO+995jU169fP+jo6EBLSwsCgQDNzc1qzTt37hwePHjAqwZV5nVobm5GWVkZ3nrrLQCAQCCAvr4+57y+0HdZ52lpacn/hd7e3o729vZnrozbk/z8fNy/f7/LttDQUERFRUEsFgPo/bN0ysrK0NTU1GVbUVGRfG2d8vJypa4Ms36f6WzT6tWI2LVL/n3Erl2I4LhkNct25TVQqKur6zJaNzc35zyaYpnV2dSpU9HQ0MD0YTlLlixBeno63nnnHcTHxyv9etb72tfyWGBd044dO/DJJ5+gXz/+034ePXqEixcvIiQkBIsXL0ZbWxtu3rypMXmdhYSEID8/HzExMRg4cKDa8xoaGjBw4EDs27cPK1asQExMDFpbuT+Wpi/0XVXso0QigY+PD1xdXeHm5obx48fzygMAW1tbuLu74/z588jJyYGzszPvTAB466238Msvv/DKYPU+Y2djAxMjI+SdP4+CoiK8pKcHhx6Wfe4Nlu36j57M2L9/f4SGhiI6OpppblxcHHx9fZGVlaXUJSvyz5SXlwdDQ0OM6WENDy50dXVhZWWFhIQExMfHQyAQ9LhGvLryOiQmJkIkEsHDwwP19fW8n+bIIk8ikaCiogLTpk3Dnj170L9/f3z77be86iLK09bWxsmTJ5Gfn4+SkhJcu3aNd6aOjg4MDQ3h6uqKNWvW4OjRo7wzZ8+eDYlEgpycHM4ZrN9nNq5cicjoaGzavRsRT330rS68BgpmZmaoqamRf19bWwtzc3O1Z3WwsLDAiBEjkJmZidzcXAwdOhQZGRmcJyA+LSsrC5MnT1b6daz3ta/lscCypuLiYuTm5sLb2xvh4eEoLCzE+vXrOddmYWGBhw8foqWlBVKpFNevX8ewYcM0Jq/D3bt3IZVKIZPJkJycDJFIpPY8Y2NjGBsby+dgTJo0CRUVFZxr+qf3XVXkdWZgYICJEyciLy+Pd1ZNTQ3S0tIAPLmsLpVKeZ3Lp0yZAhcXF+zqdKmfC9bvM1ajRmHUiBEwGjQIo62tOdfFsl15DRScnZ1x48YNVFVVQSwWIzU1FTNmzFB7Vodr165hwoQJ8slR9fX1ePfdd9HY2Mg5c8SIEfKvPTw8OF3CZb2vfS2PBZY1hYWFISsrC6dOnUJUVBRcXFywdetWzrU1NTVh6NCh0NF5shSLhYVFt89r1ZnXwdTUVP71zJkzeU/yY5E3ePBgGBsby0+QJSUlXY5ZZf3T+64q8u7duyef29Xa2oqff/4Zr7zyCue8DidOnJD/w8zGxgZCoZDzuVwkEsHPzw+bN29GW1sbr7pU8T5TWV2N6ro6XnWxbFdei0Lp6OggOjoaPj4+kEgkCA4O5nz5lUXWnj17MHHiRAwePBhnzpzB3r17kZqayqkeAIiMjIRIJMKgQYOQkZGBAwcOYNKkSbCwsIBMJkN9fX2vb9HpjOXfrS/msaCJNXWor6/H9evXERgYCKlUijt37nS7Tex55x04cABubm4wMjJCaWkpoqKi4ObmBgcHB8hkMlRXV2OVEpOuWOd1tnDhQuzevRvt7e0YOnQor9tVNbGfaPrxeffuXaxduxZSqRRSqRTTp0/Hm2++qVRGSkoKvLy8YGxsjFu3biEiIgKJiYlITEzE5cuXIRaLERwc3KusTz/9FA4ODjAwMMChQ4eQkpKCWbNmQSAQYPPmzQCeTGjcv39/r/JYv888LSsnBzaWltDV1cXJ7Gz4cFy0jGW7asmeMUWzrKwMVlZWnIJVzd7enmnekCFDmObx+cyrr6usrGTyGTrr/kurR2qGpKQkpnksV4+sqKhgcm7S5HNv58vZLLBePXLmzJlM865cucIsqyI//29/xsPPDymxsRAIBPBfuBD5x48rvGuE9SrFis69/+jJjIQQQsiLIj0rC6KxYzHczAymQ4bAzcUF32ZmqrssGigQQggh6iaTyRAVG4vPPv5Yvm1taCh2x8fLn/mgLjRQIIQQQtTs8tWrCPT3h2mnj8GNDA3x0ezZKGH48QcXvCYzEkIIIYQ/xzFj4NjDZMNFgYFqqKYruqJACCGEEIWeeUWhn0SC/gzut+7AcoYm6+fEs77l6ZtvvmGa98477zDL4rKyGel6nz9fxcXFzLIAMF9/4H5pKdO84jt3mGW9+uqrzLKI8h49eqTuEp6J9bFQx/N5Bp21vqDnXrqiQAghhBCFaKBACCGEEIVooEAIIYQQhWigQAghhBCFaKBACCGEEIU4DxQulZXhX/Pnd9v+/pIl+JXjAjbZ2dlwdHSEvb09duzYofTrY2JiUF5ejrNnz8q3rVu3DqWlpcjNzUVubi6mTp3a67ywsDB89dVXiI2NlW+bN28evvzyS+zbtw+ff/45Xn75ZaXrBIDbt29j48aN8v9CQ0ORnZ3NKau2thazZs2Cp6cnvLy8cPDgQU45nfFtC1XnscCyJhZtEBISgtjYWGzbtk2+zcXFBdu2bUNSUhIsLS17ncX6WOigiuMeACQSCebMmcNrAacO1HfVn8e3PRMSEtDQ0NBt8bLly5fj6tWrKC0t7fWCfCyznsb63Kup7cp5oDDO3h66QiEKiork2y6VlUEikUDk4KB0nkQiwYoVK5Ceno6ioiKkpqYqvcxsSkoKAgICum2Pi4uTLwF6+vTpXuf9+OOP2LRpU5dtxcXFWLZsGcLCwuSdhIthw4YhMjISkZGR2LRpE4RCIUQiEacsHR0dbNy4Ebm5ufjuu++QlJSEa9euccoC2LSFKvNYYF0TizbIz8/vdjDX1tZi3759KC8vVyqL9bHQgfVx37leZQZCilDfVX8ewL89k5KSMG3atC7bvLy84Ovri3HjxmHs2LHYuXPnc896Gstzrya3K6+PHjatXo2IXbvk30fs2oUIjkvDFhYWwsrKCpaWlhAKhQgICFD6fthz584xfb5CWVkZmpqaumwrKiqSP3e7vLwcxsbGvH/PlStXYGJiwjnL1NQUjo6OAAB9fX1YW1vj9u3bnOth0RaqzGOBdU0s2qC8vBzNzc1dttXV1aG+vl7pelgfC52xPO4BoKGhAWfOnMF7773Huzbqu+rPY9Ge+fn5uP/UM3xCQ0MRFRUFsVgM4Mly1s8762ksz72a3K68Bgp2NjYwMTJC3vnzKCgqwkt6enDguDxwXV0dhg8fLv/e3NwctbW1fMqTCwkJQX5+PmJiYjBw4EAmmQDw1ltv4ZdffuGdc+HCBUycOJFBRcCtW7dQWlrK+eoEwL4tVNm2XKmyJhZtoCosjgWWxz0A7NixA5988gn69eM/ZYr6rvrzWLZnZ7a2tnB3d8f58+eRk5MDZ2dnjcjqwPe41+R25d2SG1euRGR0NDbt3o2IlSv5xjGXmJgIkUgEDw8P1NfXY8uWLUxyZ8+eDYlEgpycHF457e3tKC4uhouLC++ampubERISgsjISAwYMIB3HlGeJrcBy2OB1XGfl5cHQ0ND5k9GJeqhyvbU0dGBoaEhXF1dsWbNGhw9elQjsgDNPu5Z4D1QsBo1CqNGjIDRoEEYbW3NOcfMzAw1NTXy72tra2Fubs63PNy9exdSqRQymQzJyclM/pU3ZcoUuLi4YFeny69clZSUYOTIkbyvdDx+/BghISHw8/ODt7c3ryzWbaGqtuVDFTWxbANVYHkssDrui4uLkZubC29vb4SHh6OwsBDr16/nnEd9V715rNuzs5qaGqSlpQF4clldKpVy/riWZRar416T25XJtaHK6mpU83wetrOzM27cuIGqqiqIxWKkpqZixowZvGvr/Hz+mTNn8p6kIxKJ4Ofnh82bN6OtrY1veUw+dpDJZFi9ejVsbGywePFi3jWxbgtVtS0frGti3QaqwPpYYHHch4WFISsrC6dOnUJUVBRcXFywdetWznnUd9Wbx7o9Oztx4gQmT54MALCxsYFQKERjY6Nas1ge95rcrryXmc7KyYGNpSV0dXVxMjsbPm+/za0QHR1ER0fDx8cHEokEwcHBSl++OnDgANzc3GBkZITS0lJERUXBzc0NDg4OkMlkqK6uxiolJl19+umncHBwgIGBAQ4dOoSUlBTMmjULAoEAmzdvBvBkAtr+/fuVqrNDW1sbysrKEBwczOn1HQoKCnDs2DHY2dnJb3n77LPPMGXKFE55LNpClXkssK6JRRuEhobCzs4O+vr62LNnD9LS0tDc3Iy5c+diwIABWLVqFaqrq3t1mxPrY+FprI571qjvqj+PhZSUFHh5ecHY2Bi3bt1CREQEEhMTkZiYiMuXL0MsFvf6vMky62ksz72a3K5aMplMpuh/Xi0pgd3fXI7x8PNDSmwsBAIB/BcuRP7x49DS0urxZ1muHmlmZsYsCwDc3NyY5vn7+zPN60urR1ZWVsKOx+S4DmVlZbCysmJQ0RMs7yJYt24dsyzg+a8eqcxxD/Sd1SMrKipgb2/PO4d132Xpt99+Y5rn5OTENI81lqtHvqjnXl4fPaRnZUE0diyGm5nBdMgQuLm44NvMTD6RhBANR8c9IX0L54GCTCZDVGwsPvv4Y/m2taGh2B0fL3/OACHkn4WOe0L6Hs4DhctXryLQ3x+mQ4bItxkZGuKj2bNRcuUKk+IIIZqFjntC+h7Okxkdx4yBYw8TIxYFBvIqiBCiuei4J6TvodUjCSGEEKLQM68oSLW1md6pwJKtrS3TPNazxrk+O1yRefPmMcu6fv06sywAXR4T+k/GcsZyfHw8sywA0NPTY5qXd+MG07wJEyYwzSPK6fzgHb5Y36XA4sF1nVVVVTHNY7EGSYfjx48zywKe310UdEWBEEIIIQrRQIEQQgghCtFAgRBCCCEK0UCBEEIIIQrRQIEQQgghCvEeKGRnZ8PR0RH29va9WqxGlVnr16/HqVOncOTIEfm2RYsW4fDhw0hOTsbevXuVWko0ISEBDQ0NuHz5cpfty5cvx9WrV1FaWoovvvhCLfWxrq2ztrY2+Pv7w8fHB9OnT8fevXs55XTGsp+wwromTToWVNk/AOD999/HRx99hAULFmDRokWccwDNbgdV5LHAsiYWx7sq+5tIJEJQUBCCgoLg7e0NbW1tpV7/4YcfYuvWrQgPD5dve+mll7B06VJs2LABS5cuVequIdbvM53V1tZi1qxZ8PT0hJeXFw4ePMgppwOrfsJroCCRSLBixQqkp6ejqKgIqampnJeuZZGVmZmJlStXdtl2+PBhBAYGIigoCGfPnsX8+fN7nZeUlIRp06Z12ebl5QVfX1+MGzcOY8eOxc6dO9VSH+vaOhMKhUhOTsbJkyeRkZGBvLw8FBUVccoC2PYTVljXpGnHgir7R4c9e/YgISGB162emtwOqshjgXVNLI53VfU3fX19ODk5ISUlBcnJydDS0sLo0aOVyrhw4QK+/PLLLtumTp2Ka9euYcuWLbh27RreeuutXuexfp/pTEdHBxs3bkRubi6+++47JCUl4dq1a5yyWPYTXgOFwsJCWFlZwdLSEkKhEAEBAZyfR8Aiq7i4GA8fPuyy7c8//5R/3b9/f6Xy8vPzcf/+/S7bQkNDERUVBbFYDEC55yWwrI91bZ1paWnh5ZdfBgC0t7ejvb39mSsD/h2W/YQV1jVp2rGgyv7Bkia3gyryWGBdE4vjXZX9rV+/ftDR0YGWlhYEAgGam5uVen1FRUWX8ywAODg4oKCgAMCTpaIdHBx6ncf6faYzU1NTODo6AngySLK2tsbt27c5ZbHsJ7wGCnV1dV0etmNubo7a2lq1Zz1tyZIlSE9PxzvvvMP7QTe2trZwd3fH+fPnkZOTA2dnZ42pj2VtEokEPj4+cHV1hZubG8aPH885S5VtyxXrml6EY4F13/3000+xcOFCZGRkcM7Q5HZQRR4LqqiJ5fHegUV/e/ToES5evIiQkBAsXrwYbW1tuHnzJu/aBgwYIH+zf/jwIQYMGMA7k+X7DADcunULpaWlEIlEnF7Psp/0icmMcXFx8PX1RVZWFmbNmsUrS0dHB4aGhnB1dcWaNWtw9OhRjamPZW3a2to4efIk8vPzUVJSwvnyF9EcLPtHbGwsDh48iO3bt+PEiRO4dOkSw0rJ86aK451Ff9PV1YWVlZX8Iy6BQAA7OzvetakCy/eZ5uZmhISEIDIykskghi9eAwUzM7Mujwatra2Fubm52rMUycrKwuTJk3ll1NTUIC0tDcCTSztSqZTzxJWn8a1PFbUZGBhg4sSJyMvL45zxPNpWWaxrehGOBZb9Y8hfq0cOHjwY7u7unD/71OR2UEUeC6qsicXx3oFFf7OwsMDDhw/R0tICqVSK69evY9iwYbxra2pqgoGBAYAn+9zU1MQ7swPf8/jjx48REhICPz8/eHt7c85h2U94DRScnZ1x48YNVFVVQSwWIzU1FTNmzFB7VmcjRoyQf+3h4cH7stWJEyfkncDGxgZCoRCNjY0aUR+r2u7duye/LNfa2oqff/4Zr7zyCue6VNW2fLCu6UU4Flj1j5aWFvlnsi0tLSgsLISlpSWnmjS5HVSRxwLrmlgf7x1Y9LempiYMHToUOjpPliWysLDoNheCi9LSUvn6IxMmTOh2t4ayWJ3HZTIZVq9eDRsbGyxevJhXTSz7CedlpoEnl5aio6Ph4+MDiUSC4OBgjOlhCdrnlRUZGQmRSIRBgwYhIyMDBw4cwKRJk2BhYQGZTIb6+nqlbtFJSUmBl5cXjI2NcevWLURERCAxMRGJiYm4fPkyxGIxgoOD1VIf69o6u3v3LtauXQupVAqpVIrp06fjzTff5JQFsO0nrLCuSdOOBVX2jwcPHmDDhg0Anny2PXXqVEycOJFTlia3gyryWGBdE4vjXVX9rb6+HtevX0dgYCCkUinu3Lmj9Jt6cHAwrK2toa+vj8jISJw6dQo//PAD5s2bB1dXVzx48ACHDh3qdR7r95nOCgoKcOzYMdjZ2WHq1KkAgM8++wxTpkxROotlP9GSyWQyRf+zrKwMVlZWnIJVzcvLi2nehQsXmOZxPXEqwrI+TV89srKyksnnkJrcf1ljvXpkbm4u07y+snpkRUUF7O3teeew7rssV4+0sbFhlgVo/uqRHXdHsKDpq0cqOvf2icmMhBBCCOGGBgqEEEIIUYgGCoQQQghRiAYKhBBCCFGI110PyurP4LaWDkuWLGGWBbCfzGhra8s0j+UDj/g8Sa8nS5cuZZrXF2zbto1pnozx0wL/+9cjfck/Q8dzL1hgPYFuwYIFTPNYP5qc5eTNr7/+mlkW8PzOvXRFgRBCCCEK0UCBEEIIIQrRQIEQQgghCtFAgRBCCCEK0UCBEEIIIQrxHihkZ2fD0dER9vb22LFjB6eMS2Vl+Nf8+d22v79kCX7luFjH7du3sXHjRvl/oaGhyM7OViojISEBDQ0N3Z4tvnz5cly9ehWlpaVKPdM7JCQEsbGxXWa8u7i4YNu2bUhKSlJqYZ2YmBiUl5fj7Nmz8m3r1q1DaWkpcnNzkZubK39WOBcikQhBQUEICgqCt7c3tLW1OWcBbPoJa6xrYpnn6uqKZcuWYfny5Xj99dc556ji2Fq2bBmsra151dWZJreDKvJYYFkTi/ZU5fmIZX9ra2uDv78/fHx8MH36dOzdu1fpDNbvC51p6nmX10BBIpFgxYoVSE9PR1FREVJTUzktNzvO3h66QiEKiork2y6VlUEikUDk4MCptmHDhiEyMhKRkZHYtGkThEIhRCKRUhlJSUmYNm1al21eXl7w9fXFuHHjMHbsWOzcubPXefn5+d0aq7a2Fvv27UN5eblStaWkpCAgIKDb9ri4OHh6esLT0xOnT59WKrODvr4+nJyckJKSguTkZGhpaWH06NGcsgB2/YQl1jWxzDMxMcFrr72G+Ph47N+/H7a2tjA0NOSUpYpj68MPP8SxY8c4vfZpmtwOqshjgXVNLNpTlecjlv1NKBQiOTkZJ0+eREZGBvLy8lDU6djoDdbvCx00+bzLa6BQWFgIKysrWFpaQigUIiAgAN999x2nrE2rVyOi0+IgEbt2IWLVKj7lyV25cgUmJiZKr4Wen5/fbUnT0NBQREVFQSwWA1Dunt3y8nI0Nzd32VZXV4f6+nql6gKAc+fO4cGDB0q/rrf69esHHR0daGlpQSAQdKtbGSz7CSusa2KZN2TIENTU1ODx48eQSqWoqqritTog62PLzc2N2b30mtwOqshjgXVNLNpTlecjlv1NS0sLL//1jJD29na0t7dDS0tLqQzW7wudaep5l9dAoa6ursvKgebm5qjl+OAXOxsbmBgZIe/8eRQUFeElPT04MFhBEHjyMCVWqzna2trC3d0d58+fR05ODpydnZnkshISEoL8/HzExMRg4MCBnDIePXqEixcvIiQkBIsXL0ZbWxvn9dUBtv2EFdY1scxraGjAyJEjoaenB4FAAFtbWxgYGHCuTZXHFl+a3A6qyGNBE2tShMX5iDWJRAIfHx+4urrCzc0N48eP553J4n1Bk8+7GjWZcePKlYiMjsam3bsRsXIlk8z29nYUFxfDxcWFSZ6Ojg4MDQ3h6uqKNWvW4OjRo0xyWUhMTIRIJIKHhwfq6+uxZcsWTjm6urqwsrJCQkIC4uPjIRAImCz7THqnsbERZ86cQXBwMObOnYvbt2/jGavB94oqji1CnoXV+Yg1bW1tnDx5Evn5+SgpKWHy1FsW7wuafN7lNVAwMzPrss55bW0tzM3NOedZjRqFUSNGwGjQIIy2tuZTmlxJSQlGjhzJbDRbU1ODtLQ0AE8u7UilUqU/0lCVu3fvQiqVQiaTITk5Wek5GR0sLCzw8OFDtLS0QCqV4vr16xg2bBjnulj3ExZY18Q679dff0VcXBwSExPR2tqKxsZGzlmAao4tFjS9HfpC31UVVucjVTEwMMDEiRORl5fHO4vF+4Imn3d5DRScnZ1x48YNVFVVQSwWIzU1FTNmzOATicrqalTX1fHK6Izlxw4AcOLECUyePBnAk2eAC4VC3idxVkxNTeVfz5w5k/PElaamJgwdOhQ6Ok+WArGwsOj2mZwyVNFP+GJdE+u8js9RBw4cCDs7u24zrLlgfWyxoOnt0Bf6rqqwOh+xdO/ePTx8+BAA0Nraip9//hmvvPIK71wW7wuafN7ltSiUjo4OoqOj4ePjA4lEguDgYF6TrrJycmBjaQldXV2czM6Gz9tv8ykPbW1tKCsrQ3BwMKfXp6SkwMvLC8bGxrh16xYiIiKQmJiIxMREXL58GWKxWKns0NBQ2NnZQV9fH3v27EFaWhqam5sxd+5cDBgwAKtWrUJ1dXWvbmM5cOAA3NzcYGRkhNLSUkRFRcHNzQ0ODg6QyWSorq7GKo4T1urr63H9+nUEBgZCKpXizp07vN6oWPcTFljXxDpvzpw50NPTg1QqRWZmJlpbWzlnAWyPrQULFuDMmTO4d+8exowZg/DwcAQFBXHK0vR26At9l0V7qvJ8xLK/3b17F2vXroVUKoVUKsX06dPx5ptvKpXB+n2hgyafd7Vkz/jws6ysDFZWVpwLfdrfrR7p4eeHlNhYCAQC+C9ciPzjxxXOSE1S8pkIf2fevHlM8+bOncs0j+VM6w0bNjDLAtivYFZZWcnksznW/Zcl1qtHRv7NaqrKHFsA+9UjdXV1meZpqoqKCtjb2/POYd1329ramGUp87yX3qisrGSap8mrR+7qdPcRC8/r3KsxkxnTs7IgGjsWw83MYDpkCNxcXPBtZqa6yyLkhUfHFiGED40YKMhkMkTFxuKzjz+Wb1sbGord8fGQSqVqrIyQFxsdW4QQvjRioHD56lUE+vvDdMgQ+TYjQ0N8NHs2Sq5cUWNlhLzY6NgihPDFazIjK45jxsCxh0kWiwID1VANIf8cdGwRQvjSiCsKhBBCCNFMz/WKQivHhW168t577zHLAoDff/+daV5sbCzTvJkzZzLLevfdd5llEW6UXcn07/BZKbQnEyZMYJpH1IvlXScsz0UAMGjQIKZ5rNaF6MDyDrZVc+YwywIAfjdN9x5dUSCEEEKIQjRQIIQQQohCNFAghBBCiEI0UCCEEEKIQjRQIIQQQohCvAcK2dnZcHR0hL29fa8WM3peWcuWLYO1tTVef/11Xjmdubq6YtmyZVi+fDmn3JiYGJSXl+Ps2bPybevWrUNpaSlyc3ORm5vb69nrISEhiI2N7bJmgIuLC7Zt24akpCRez2Nva2uDv78/fHx8MH36dOzdu5dzVgeWbcsK65r45q1fvx6nTp3CkSNH5NsWLVqEw4cPIzk5GXv37uW8pPn777+Pjz76CAsWLMCiRYs4ZXSmqcf9i5DHgqbtI+vzUUJCAhoaGrotirR8+XJcvXoVpaWl+OKLL3qVxfK8C6ju3HuprAz/mj+/2/b3lyzBrxwXh2LVT3gNFCQSCVasWIH09HQUFRUhNTWV81KiLLMA4MMPP8SxY8c4v/5pJiYmeO211xAfH4/9+/fD1tYWhkre7pmSkoKAgIBu2+Pi4uDp6QlPT0+cPn26V1n5+fndGr62thb79u1DeXm5UnU9TSgUIjk5GSdPnkRGRgby8vJQVFTEOY9127LAuiYWeZmZmVi5cmWXbYcPH0ZgYCCCgoJw9uxZzO/hRNJbe/bsQUJCAuLj4zlnAJp93Gt6HguauI+sz0dJSUmYNm1al21eXl7w9fXFuHHjMHbsWOzcubNXWSzPu4Dqzr3j7O2hKxSioNO59lJZGSQSCUQODkrnsewnvAYKhYWFsLKygqWlJYRCIQICAjivcsgyCwDc3NyY3k87ZMgQ1NTU4PHjx5BKpaiqqlJ6yc5z587hwYMHTOopLy9Hc3Nzl211dXWor6/nna2lpYWX/1o9sL29He3t7c9cafDvsG5bFljXxCKvuLgYDx8+7LLtzz//lH/dv39/zvWxpMnHvabnsaCJ+8j6fJSfn4/7T602HBoaiqioKIjFYgC9XyWS5XkXUO25d9Pq1YjotMJkxK5diOC4PDfLfsJroFBXV4fhw4fLvzc3N0dtba3as1ShoaEBI0eOhJ6eHgQCAWxtbWFgYMAkOyQkBPn5+YiJicHAgQOZZPIlkUjg4+MDV1dXuLm5Yfz48ZyzNLFtWdekyn1csmQJ0tPT8c477/C6GvDpp59i4cKFyMjI4FWPJh/3mp7HQl/Yx57Y2trC3d0d58+fR05ODpydnXnlaeJ5187GBiZGRsg7fx4FRUV4SU8PDj0s+9wbLNuVJjP2UmNjI86cOYPg4GDMnTsXt2/fhkwm452bmJgIkUgEDw8P1NfXY8uWLQyq5U9bWxsnT55Efn4+SkpKcO3aNXWX1GfFxcXB19cXWVlZmDVrFqeM2NhYHDx4ENu3b8eJEydw6dIlxlUSolo6OjowNDSEq6sr1qxZg6NHj3LO0tTzLgBsXLkSkdHR2LR7NyKe+ihSXXgNFMzMzFBTUyP/vra2Fubm5mrPUpVff/0VcXFxSExMRGtrKxobG3ln3r17F1KpFDKZDMnJyRCJRAwqZcfAwAATJ05EXl4e5wxNbFvWNT2PfczKysLkyZM5vXbIX6tHDh48GO7u7rw+09bk417T81joC/vYk5qaGqSlpQF4clldKpVyntyryeddq1GjMGrECBgNGoTR1tacc1i2K6+BgrOzM27cuIGqqiqIxWKkpqZixowZas9SlY7P7QcOHAg7O7tuM3K5MDU1lX89c+ZMtU+UAoB79+7JPytvbW3Fzz//jFdeeYVznia2LeuaVLWPI0aMkH/t4eGBmzdvKp3R0tIin+vQ0tKCwsJCXnfFaPJxr+l5LPSFfezJiRMn5ANlGxsbCIVCzv9Y08TzbmeV1dWorqvjlcGyXXktCqWjo4Po6Gj4+PhAIpEgODhY6Ql+qsgCgAULFuDMmTO4d+8exowZg/DwcAQFBXHOA4A5c+ZAT08PUqkUmZmZaG1VbkmOAwcOwM3NDUZGRigtLUVUVBTc3Nzg4OAAmUyG6upqrOrlxJXQ0FDY2dlBX18fe/bsQVpaGpqbmzF37lwMGDAAq1atQnV1NadbYu7evYu1a9dCKpVCKpVi+vTpePPNN5XO6cC6bVlgXROLvMjISIhEIgwaNAgZGRk4cOAAJk2aBAsLC8hkMtTX1/f6lrDOHjx4gA0bNgB4Mvdk6tSpmDhxotI5HTT5uNf0PBY0cR9Zn49SUlLg5eUFY2Nj3Lp1CxEREUhMTERiYiIuX74MsViM4ODgXmWxPO+qYl+flpWTAxtLS+jq6uJkdjZ83n6bUw7LfqIle8YH7WVlZbCysuIUrGptbW1M83Z1mmnKgiavHrlx40ZmWQC6TJhhobKyEnYcJ/B0psn918vLi2ne9u3bmebR6pHcVFRUwN7enneOJvddFs/h6Oyrr75imsd69UiW597kqKi//RkPPz+kxMZCIBDAf+FC5B8/rvCuM5YrMgOKz700mZEQQgjRAOlZWRCNHYvhZmYwHTIEbi4u+DYzU91l0UCBEEIIUTeZTIao2Fh89vHH8m1rQ0OxOz4eUqlUjZXRQIEQQghRu8tXryLQ3x+mf92hBABGhob4aPZslFy5osbKeE5mJIQQQgh/jmPGwLGHyYaLAgPVUE1XdEWBEEIIIQo9866H4uJi6OrqPs96CEFbWxuvR0Z3oP5Lnjfqu+RFpqj/PnOgQAghhJC+jT56IIQQQohCNFAghBBCiEI0UCCEEEKIQjRQIIQQQohCNFAghBBCiEI0UCCEEEKIQjRQIIQQQohCNFAghBBCiEI0UCCEEEKIQjRQIIQQQohCNFAg5C8bN27Ev//9b+Y/y0JGRgbmz5+v8P9fuHABHh4eKvv9Tk5OuHXrFufXz5gxAxcuXGBYUe+EhITg+PHjvDJU/bclRNPRWg+kT3jzzTfR2NgIbW1taGtrw9raGr6+vnj//ffRrx+/8fKFCxewZs0a5OXlMar2740ePRrZ2dkYOXKk2mroK+hvS/o6HXUXQMjzEhcXh0mTJqGpqQkFBQXYunUrSkpK8L//+7/qLo0QQjQWffRA+pwBAwZgypQp2LNnD44fP45r164BAMLDwxEdHS3/uQMHDuCNN97AG2+8gdTUVIwePRo3b97s8rN//vknFi5ciDt37sDJyQlOTk5oaGhASUkJ/Pz8IBKJMGnSJIWDkcDAQGRlZQEAfvnlF4wePRo5OTkAgHPnzsHX1xcAkJaWhg8++AAA8D//8z8AAF9fXzg5OeHUqVPyvMTERLz++ut444038O233yr8G8ydOxfR0dGYM2cOnJycsGTJEjx48ACrV6+GSCSCv78/ampq5D/fed9zc3Ph7e0NJycnuLu7IyEhAQBw//59LF68GM7OzpgwYQI+/PBDSKVSAE+u6Pz8888AgJiYGHzyySdYu3YtnJycMGPGDFy+fFn+u8rKyvCvf/0LTk5OCAsLw4oVK7q0S2dpaWmYM2cOIiMj8dprr2HatGk4d+5cl/1MTU0FAERERODjjz+W/78dO3YgODgYMpkMYrEYX3zxBby8vDBp0iRs3LgRra2tPf7O+Ph4uLu7w8nJCe+8806X30fIPxENFEif5ejoiKFDh+LixYvd/l9eXh6SkpJw6NAh/PDDDwo/X3/ppZdw4MABmJiYoKioCEVFRTA1NcXWrVsRFBSEX3/9FT/88AOmT5/e4+tdXFxQUFAAACgsLMSIESNQWFgIACgoKICLi0u31xw5cgQAkJ6ejqKiInh7ewMAGhsb0dTUhLy8PGzduhWRkZH473//q3D/T506he3btyMvLw/V1dWYM2cO/P39UVBQACsrK4VzMNavX4/IyEgUFRXhu+++g6urKwDg0KFDMDU1xblz53D27FmsWrUKWlpaPWb85z//wYwZM3Dx4kW8+eab2Lx5MwBALBZj+fLleO+991BQUICZM2fi9OnTCvcBAEpKSmBhYYHz588jLCwMy5cvxx9//NHt58LDw3Ht2jWkpaXh4sWLOHbsGL744gtoaWlh586dqKysxIkTJ5CdnY07d+70uP+///47jhw5gmPHjqGoqAgJCQkwNzd/Zn2EvOhooED6NBMTkx7fTL///nv4+fnBxsYGenp6Xf4l2hs6Ojqorq7G/fv38fLLL2P8+PE9/tyECRO6DBQWL14sHygUFhZiwoQJSv3OZcuWQSAQwNPTEy+99BIqKysV/ryfnx8sLCwwYMAAeHh4YMSIEZg0aRJ0dHQwbdo0XLlyReHvuXHjBh49eoSBAwfC3t5evv3u3buoq6uDQCCAs7OzwoHCa6+9Bk9PT2hra8PX1xe//fYbAODSpUtob29HUFAQBAIB3n77bTg4ODxzvw0NDREcHAyBQABvb29YWlrKr8p0pqenh+3btyMqKgpr1qzB//t//w9Dhw6FTCbD0aNH8fnnn2PQoEHQ19fH4sWLkZmZ2S1DW1sbYrEYFRUVePz4MYYPHw4LC4tn1kfIi44GCqRPa2howMCBA7ttv3PnDoYOHSr/ftiwYUrlbt26FVVVVZg+fTr8/f3x008/9fhz48ePR1VVFRobG/Hbb7/B19cXt2/fxv3791FSUgJnZ+de/85BgwZBR+f/n3akp6eHP//8U+HPGxsby7/W1dXt8n3//v0Vvnbfvn3Izc3F5MmTERgYiKKiIgDAggULMHLkSMyfPx9TpkxBfHx8r353//790dbWhvb2dty5cwempqZdBhh/97d/+ufNzMxw586dHn923LhxGD58OGQymfwqz/3799HS0gI/Pz84OzvD2dkZISEhePDgQbfXjxw5Ep9//jliYmIwadIkrFy5Eg0NDc+sj5AXHQ0USJ9VUlKChoYGvPbaa93+n4mJSZc3gNu3byvM6elfzaNGjcLu3btx7tw5LFy4EGFhYT2+8erp6cHe3h7JycmwsbGBUCiEk5MTkpKSYGFhAUNDQ457pzqOjo748ssv8fPPP2Pq1KlYsWIFAEBfXx/h4eH48ccf8eWXX+LQoUNKf34/ZMgQNDQ0oPPNWM/62wPo8edNTEx6/NkjR47g8ePHMDExwcGDBwEAgwcPRv/+/ZGZmYmLFy/i4sWL+OWXX+QDoKf5+Pjg66+/xk8//ST/2IKQfzIaKJA+59GjR/jpp5+watUqvPvuuxg9enS3n5k2bRrS0tJQUVGBlpYW7N+/X2GekZER/vjjDzQ1Ncm3paen4/79++jXrx8MDAwAQOFtmBMmTMDhw4fl8xEmTpzY5fueGBsb83quAVdisRgZGRloamqCQCDAyy+/LN+vn376CTdv3oRMJsOAAQOgra2t8KMHRcaPHw9tbW0cPnwY7e3tOH36dJeJjj25f/8+kpOT8fjxY3z//feoqKiAp6dnt5+rrKzEnj17sGPHDmzfvh0HDx7E1atX0a9fPwQEBGDbtm24d+8egCeDj/z8/G4Zv//+O86dOwexWAyhUAhdXV3et9cSouno9kjSZyxZsgTa2tro168frK2tMW/ePMyZM6fHn/X09MTcuXMRFBQELS0tLF26FCdOnIBQKOz2s1ZWVpgxYwamTp0KiUSCzMxM5OfnIyoqCq2trTAzM0N0dDT69+/f4+9ycXHB//3f/8kHBi4uLmhubn7mQGH58uUIDw9Ha2srIiMjYWRkxOEvwk16ejo2b94MiUQCS0tL7NixAwBw8+ZNbN68Gffv34eBgQE++OAD+UTH3hIKhYiJicGGDRuwe/duuLu7w8vLq8e/ewdHR0fcvHkTrq6uMDY2xr59+zB48OAuP9Pe3o41a9Zg4cKFePXVVwEAK1euxNq1a/Htt99izZo1+Pe//43Zs2fjwYMHMDU1xQcffAB3d/cuOWKxGLt27UJFRQUEAgGcnJwQGRmp1D4S8qKhBy4R0gsVFRWYOXMmLl++3GUeAFG9gIAA+R0ZT0tLS0Nqaiq+/vprNVRGSN9A18wIUeCHH36AWCzGf//7X+zYsQOTJ0+mQcJzUFBQgLt376K9vR3Hjx9HeXl5t3/ZE0KeHzrrEaLAN998g/DwcGhra8PFxQURERHqLqlPqKysxIoVK9DS0oLhw4dj3759CicnEkJUjz56IIQQQohC9NEDIYQQQhSigQIhhBBCFKKBAiGEEEIUooECIYQQQhSigQIhhBBCFPr/AL3KjkTmtlbJAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"show_digits(digits, title=\"Digits with missing pixels\")"
]
},
{
"cell_type": "code",
"execution_count": 74,
"id": "b81a57ad-a81f-445b-83b2-d2352e614167",
"metadata": {},
"outputs": [],
"source": [
"# Coded for clarity, not for best vectorized speed\n",
"# Function definition only; used in later cell\n",
"def fill_missing(digit):\n",
" digit = digit.copy()\n",
" missing = np.where(digit == -1)\n",
" for y, x in zip(*missing): # Pull off x/y position of pixel\n",
" # Do not want negative indices in slice\n",
" x_start = max(0, x - 1)\n",
" y_start = max(0, y - 1)\n",
" # No harm in index larger than size\n",
" x_end = x + 2\n",
" y_end = y + 2\n",
" # What if another -1 is in region? Remove all the -1s\n",
" region = digit[y_start:y_end, x_start:x_end].flatten()\n",
" region = region[region >= 0]\n",
" total = np.sum(region)\n",
" avg = total // region.size\n",
" digit[y, x] = avg\n",
" return digit"
]
},
{
"cell_type": "code",
"execution_count": 75,
"id": "a92431e8-ede0-4e84-ab13-3669b2f91d73",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(None, None)"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAIUCAYAAAB7HQS+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADQR0lEQVR4nOzde1AUV/o38C+GGUURFBAveMMBXO5KQDEEwY0m3lg33mK5CBrxgrBEJBoviVhErTGIoBClQAhlDJVX1IiKWdikAoIrQtZBZSQaWREYEC8xgiggM/P+4Y8pUMYw3Wekic+nKrXQ2fnmOX1Ozxx6uvsYqNVqNQghhBBCOtGruwsghBBCiHDRRIEQQgghWtFEgRBCCCFa0USBEEIIIVrRRIEQQgghWhm+7F+WlJRAJBK9qlp00tjYyDSvoqKCaZ6pqSnTPCsrK2ZZBgYGzLL04enTpxg3bhzvHCGPX9b+97//Mc17+vQp07zhw4czy+rXrx+zLNZo7OquqamJad7169eZ5hkbGzPLGjNmDLMsAOilVDLNa1apOh2/L50oiEQiSCQSpoWwUlRUxDRv06ZNTPNmzZrFNO/zzz9nltW7d29mWfpw8+ZNJjlCHr+sbdy4kWne3bt3meZ98cUXzLJcXFyYZbFWXl7OJOd1Gru//PIL07yQkBCmeV5eXsyyMjIymGUBQJ/ffmOaV/bwYafb6asHQgghhGhFEwVCCCGEaEUTBUIIIYRoRRMFQgghhGjFe6KQk5MDFxcXODo6Ijo6WjBZAPDBBx9g6dKlWL58OVauXKnz66VSKYqKivD9999rtoWHhyMrKwunTp1CWloaLC0tOdXm4+ODjRs3YtOmTfD19eWU0V5ISAhsbGwwadIk3lkA+75gnceCkNvINyssLAxff/01EhISNNuWLVuGAwcOYN++fdi8ebNOdw9s2bIFZ86cwTfffKPZtnLlShw+fBiHDh3C3r17YWFhoXOdbfgeq+0JuV9ZEXobWecplUosWrQIYWFhOr82Pj4e165dw7lz5zTbPvnkE5SWliIvLw95eXmYOnVql/NYH1vtsdpvl+Ry/P3DD1/Y/sHq1bh45YrOebwmCkqlEmvXrkVmZiZkMhkyMjJQVlbW7VntxcXFISUlBUlJSTq/9tixY1i2bFmHbcnJyZg1axb8/Pzw008/4Z///KfOuUOHDsWkSZMQExODXbt2wdHRkdebLAAsXrwYR48e5ZXRhnVf6Ktv+RByG1lk/fjjj9i2bVuHbSUlJQgJCUFYWBgUCgXmz5/f5bysrCyEh4d32Hb48GH4+/sjICAA586dw4edvDHpgs+x2kbI/cqK0Nuoj32Wnp4Oa2trzq9dsGDBC9sTExPh4+MDHx8f/PDDD13OY31stWG531wdHdFbLEaRTKbZdkkuh1KphJuzs855vCYKxcXFkEgksLa2hlgsxoIFC3D69Oluz2KluLgYv//+e4dtjx490vxsZGQELotvDh48GLdu3cLTp0+hUqlw48YNuLq68qrVy8sLAwcO5JXRhnVfCLVvhdpGFllyuRwNDQ0dtslkMqhUKgDAtWvXdJqclpSUoL6+vsO2x48fa37u06ePTvXpi5D7lRWht5F1Xl1dHQoKCvD+++9zev358+fx4MEDzv/957E+ttqw3m/bIiIQGROj+T0yJgaR69ZxyuI1UaipqenwIBUrKysoFIpuz2rv448/xooVK3Dy5EneWW0iIiJQUFCAOXPmIC4uTufX19bWQiKRoG/fvhCJRHBwcMCAAQOY1ccX677QV9/yIeQ2vor9NW3aNPz3v//lnbN69WpkZmbivffe43UmAGBzrAq5X1kRehtZ50VHR+Ojjz5Cr15sL6kLCgpCfn4+4uPjmT4gj+uxxXq/2dvawtLcHGcLC1Ekk6GvkRGc7e05Zf2pL2ZMSEjAwYMH8cUXX+DEiRO4dOkSk9yYmBi8/fbbyMzMxJIlS3R+fV1dHX744QeEhIQgODgYCoWC05kJQrhYuHAhlEolcnNzeWclJiZizpw5yM7O5nS6tY2+jlXSs509exZmZmZwcHBgmpuamgo3NzdMnjwZt2/fxvbt25nksjy2WNgaHo6o2Fhs27MHkc99dagLXhOFYcOGobq6WvO7QqHg/KhhllltBg0aBAAYOHAgvL29mX+3mJmZienTp3N6bWFhIaKjo7Fv3z48fvwYd+7cYVobH6z7Qh99y5eQ26jP/fXOO+/Aw8MDMe1OSbKQnZ2NKVOmcH49q2NVyP3KitDbyDKvpKQEeXl5mDlzJjZu3Iji4mJs2bKFc21t7t69C5VKBbVajUOHDsHNzY13Jt9jSx9jTTJ6NEaPGAHzAQMw1saGcw6viYK7uztu3LiBiooKtLS0ICMjg/Oji1lmAcCTJ08036E+efIExcXFnC+GaW/06NGan6dNm8b5ka1tzw8fOHAgXF1dmZwGZoV1X7DOY0HIbdTX/nJzc8PcuXPx+eefo7m5mXfeiBEjND9PnjwZt27d4pTD8lgVcr+yIvQ2sswLCwtDdnY2zpw5A6lUCg8PD+zYsYNzbW0GDx6s+Xn27Nm8/4hkcWzpa6zdrKxEZU0Nr4yXrvXwhy82NERsbCz8/PygVCoRGBjI+RQRyywAePDgAT799FMAz64mnTp1KiZOnKhTRlxcHCZOnIiBAweioKAAe/fuha+vL8aMGQOVSgWFQoHPPvuMU33Lly9Hv379oFQqkZGRgSdPnnDKaZ9XUFCA+/fvw8HBARs3bkRAQACnLNZ9wTqPBSG3kUXWxx9/DGdnZ5iYmOCrr75Ceno65s+fD5FIpFk35Nq1a9i/f3+X8qKiouDm5oYBAwbg5MmTSE5OxltvvYWRI0dCrVbj9u3b2LVrl85tBdgcq22E3K+sCL2NQttnycnJ8PLygrm5OUpLSyGVSuHl5QVnZ2eo1WpUVlZinQ4X+bE+ttroY79l5+bC1toavXv3xqmcHPi9+y6nHAP1S74cl8vlgl2YhPWiUM/fBskXLQrF3c2bN2HP8aKb9oQ8flnr7PYvPoS8KNSECROYZbFWXl4OR0dH3jmv09hlvSjUX//6V6Z5PXlRqMlz5yI9IQEikQjzVqxA/nffvXT14LKHDzt97/1TX8xICCGEvI4ys7Ph5uSE4cOGYfCgQfDy8MCxrCxOWTRRIIQQQv5E1Go1pAkJ2NTugYAbgoOxJylJ87wHXdBEgRBCCPkTuVJWBv958zD4/+4mAgBzMzMsXbgQl69e1TmP18WMhBBCCBEWFwcHuHRyIeRKf39OeXRGgRBCCCFa9dgzCqzvUvjf//7HNO/5NSL4YvmI57y8PGZZgLCvQn9dsFrnow3r9Qx0WXTnj9B4617tHwrEwvjx45nmsT4WrnI4Vf+qNJmZsQ18+LDTzXRGgRBCCCFa0USBEEIIIVrRRIEQQgghWtFEgRBCCCFa0USBEEIIIVrxnijk5OTAxcUFjo6OiI6O7tYsqVSKoqIifP/995pt4eHhyMrKwqlTp5CWlgZLS8su56WkpKCurg5XrlzRbIuMjER1dTVkMhlkMhlmzJjR5bygoCAkJCRg586dmm39+vXDhg0b8MUXX2DDhg3o27dvt9T2vA8++ABLly7F8uXLsXLlSs45bViOE1ZY1ySkY6Gzsebh4YGdO3ciLS1N59UZOxtvABAaGoqysjKUlpZyXhTK09MTISEhCA0NxaRJkzhltCfkfmVFyG1sbm7GvHnz4OfnhxkzZmDv3r06Z7Acb/Hx8bh27RrOnTun2fbJJ5+gtLQUeXl5yMvLw9SpU7tcW2efM22WL1+O8vJyzndeCLVfeU0UlEol1q5di8zMTMhkMmRkZHBerpNF1rFjx164bTI5ORmzZs2Cn58ffvrpJ/yz3SMt/0haWhqmT5/+wvbY2FiMHz8e48eP73SwaJOfn/9CZ82ePRtXr17Fhg0bcPXqVcyePbtbautMXFwcUlJSkJSUxCuH5ThhhXVNQjsWOhtrCoUC+/btw7Vr13SuqbPx5uvrizlz5sDV1RVOTk7YvXu3zrmWlpZ48803kZSUhP3798POzg5mPG75EnK/siL0NorFYhw6dAinTp3CyZMncfbsWchkMp0yWI639PT0ThdNS0xMhI+PD3x8fHS6fbezzxkAGDp0KN5++20oFIouZ7Un5H7lNVEoLi6GRCKBtbU1xGIxFixYwPn+axZZxcXFLzy/4NGjR5qfjYyM8JLFMl+Qn5+P3/5gdS5dXLt2DY2NjR22ubm5IT8/X/Pfe/PNN7ulNn1iOU6EWpPQjoXOxlpNTQ1u377NqabOxltwcDCkUilaWloAcFtxctCgQaiursbTp0+hUqlQUVHBa2ldIfcrK0Jvo4GBAfr16wcAaG1tRWtr60tXLOwMy/F2/vx5PHjwQKf//st09jkDAFu2bMGuXbt0+ox5Pleo/cprolBTU4Phw4drfreysuI8m2KZ9byIiAgUFBRgzpw5iIuL450XGhqKS5cuISUlhfeDkExMTPDw/x5y8fDhQ5iYmAimto8//hgrVqzAyZMneeXos2+5Yl1TTzkWWLKzs4O3tzcKCwuRm5sLd3d3nTPq6uowatQoGBkZQSQSwc7OjtcxIOR+ZaUntFGpVMLPzw+enp7w8vLCuHHjeOUBbMZbe0FBQcjPz0d8fDxMTU15ZU2dOhV1dXW8lswWcr++FhczxsTE4O2330ZmZiaWLFnCK+vAgQOQSCQYN24camtrERMTw6hK/ljWlpCQgIMHD+KLL77AiRMncOnSJYaVkj8DQ0NDmJmZwdPTE+vXr8eRI0d0zrh37x4KCgoQGBiIJUuWoLa2lvNfZEQ43njjDZw6dQr5+fm4fPkyrl+/zjuTxXhrk5qaCjc3N0yePBm3b9/G9u3bOWf16dMHwcHBiI2N5ZwhdLwmCsOGDevwOE+FQgErK6tuz9ImMzOz0+/1dXHnzh2oVCqo1WokJyfzfpxsfX29ZjZramqK+vp6QdQ26P9WHRs4cCC8vb15fVf2KvpWV6xr6mnHAgvV1dU4fvw4gGenOVUqFSwsLHTOuXjxIhITE5Gamoqmpibcu3ePc01C7ldWelIbTUxMMHHiRJw9e5Z3FqvxBjz72qLtvfLQoUNwc3PjXNfIkSMxYsQIZGVlIS8vD0OGDMHJkyd1rk3I/cprouDu7o4bN26goqICLS0tyMjIwKxZs7o9q73Ro0drfp42bRrKy8t55Q0ZMkTz8/vvv4/S0lJeeTKZDN7e3gAAb29vXLx4sdtre/LkCR4/fqz5ubi4WOer5NvTV9/ywbqmnnAssHbixAlMmTIFAGBrawuxWMzpQ77t+2xTU1PY29u/cKW7LoTcr6wIvY3379/X/MHT1NSE//znPxgzZgznvDasxhsADB48WPPz7Nmzef0hdP36dUyYMEFzYeTt27fxt7/9TefahNyvvBaFMjQ0RGxsLPz8/KBUKhEYGMj5QiQWWXFxcZg4cSIGDhyIgoIC7N27F76+vhgzZgxUKhUUCgU+++yzLuelp6fD19cXFhYWqKqqQmRkJHx9fTFu3Dio1WpUVFRg1apVXc4LDg6Gvb09jI2NERcXh+PHj+P06dMICQnB5MmTcf/+fSQkJHRLbe09ePAAn376KYBn3zVOnToVEydO5JQFsB0nrLCuSWjHQmdjrbGxEUuWLEH//v2xbt06VFZWdvmWqc7GW2pqKlJTU3HlyhW0tLQgMDCQS3OxaNEiGBkZQaVSISsrC01NTZxyAGH3KytCb+Pdu3exYcMGqFQqqFQqzJgxA3/96191ymA53pKTk+Hl5QVzc3OUlpZCKpXCy8sLzs7OUKvVqKysxLp167pcW2efMxkZGTq1rzNC7lcD9Uu+EJTL5ZBIJJwL1SdHR0emeaxXj+R7LcTzvv76a2ZZQl898ubNm7C3t+edI+TxyxqLZ120x3K8AdBpgv5HNm/ezCyLtfLycibvTUIeu6xXj7S1tWWax3r1SJZ5crmcWZY+aHvvfS0uZiSEEEIINzRRIIQQQohWNFEghBBCiFY0USCEEEKIVrzuetBVH4aPHGZ98WFNTQ3TPNYX1LB8BKkuzzXvCtYXM74OWF8Q1t2PFf4jfJ+iR4SD75Nan8fnjqrOLFy4kGleREQE07yeiM4oEEIIIUQrmigQQgghRCuaKBBCCCFEK5ooEEIIIUQrmigQQgghRCveE4WcnBy4uLjA0dGxy8+Nf94luRx///DDF7Z/sHo1LuqwQExKSgrq6uo6LCoTGRmJ6upqyGQyyGQyzJgxg1ONCoUC8+fPh4+PD3x9fXHw4EFOOW347rewsDB8/fXXHdaG8PLywpdffonMzEzY2Njwqm/SpEkIDQ1FSEgI5s+fD0NDfjfIsBgnrLGuiVVec3Mz5s2bBz8/P8yYMQN79+7VOSM+Ph7Xrl3DuXPnNNs++eQTlJaWIi8vD3l5eZg6dWqX8zo7tgAgNDQUZWVlKC0txa5du3SuEwAePXoEqVSKNWvWICQkBL/88gunnDZC7VeWhN5GNzc3BAQEICAgADNnzsQbb7yh0+u3bNmCM2fO4JtvvtFsW7lyJQ4fPoxDhw5h7969nFeO5FubPo8FofYrr4mCUqnE2rVrkZmZCZlMhoyMDE6rcLk6OqK3WIwimUyz7ZJcDqVSCTdn5y7npKWldbqMdGxsLMaPH4/x48fj+++/17k+4NkCG1u3bkVeXh5Onz6NtLQ0zmuss9hvP/74I7Zt29Zh261bt7Bz507ezxPv378/PD09kZiYiC+//BK9evWCk5MT5zxW44Ql1jWxzBOLxTh06BBOnTqFkydP4uzZs5C1Oza6Ij09HQsWLHhhe2JiomaVO11uk+3s2PL19cWcOXPg6uoKJycn7N69W6ca2xw8eBBubm7Yv38/4uLiMHz4cE45gLD7lRWht9HY2Bjjx49Heno6Dh06BAMDA4wdO1anjKysLISHh3fYdvjwYfj7+yMgIADnzp3Dh538cfkqatPXsSDkfuU1USguLoZEIoG1tTXEYjEWLFjA+X7ubRERiIyJ0fweGRODSB1W9AKA/Px8/MbwWQ3tDR48GC4uLgCeDTYbGxvU1tZyymKx3+RyORoaGjpsq66uhkKh4FTT83r16gWRSKT53+f/W7pgOU5YYV0TyzwDAwPN0sutra1obW2FgYGBThnnz59n+uyNzo6t4OBgSKVStLS0AHi2aqCuGhsbIZfLMW3aNACASCSCsbEx5zqF3K+s9IQ29urVC4aGhjAwMIBIJEJjY6NOry8pKdEsVd3m8ePHmp/79OnTbbXp61gQcr/ymijU1NR0mP1bWVlx/qCyt7WFpbk5zhYWokgmQ18jIzgzWEEQeHZK6NKlS0hJScGAAQN451VVVaG0tBRubm6cXs9yv+lDQ0MDzp07h3Xr1mH9+vVoampCeXk55zwhtpd1TazzlEol/Pz84OnpCS8vL4wbN45zVntBQUHIz89HfHw8TE1NeWXZ2dnB29sbhYWFyM3N5fRQpbq6OpiammLfvn1Yu3Yt4uPjeS0zLfR+ZUHobXz06BF+/vlnBAUFYdWqVWhubsatW7c457W3evVqZGZm4r333kNSUpJgamNxLAi5XwV1MePW8HBExcZi2549iHzutBNXBw4cgEQiwbhx41BbW4uYdmctuGhsbERQUBCioqLQv39/JjUKTZ8+ffCXv/wFsbGxiI6Ohlgs1pxNIa/GG2+8gVOnTiE/Px+XL1/m/DVXe6mpqXBzc8PkyZNx+/ZtbN++nVeeoaEhzMzM4OnpifXr1+PIkSM6ZyiVSpSXl2P69OmIi4tDnz59cOzYMV51ke7Vu3dvSCQSpKSkICkpCSKRiMmy8cCzr87mzJmD7OxszJ8/XzC1sTgWhIzXRGHYsGEdHkWrUChgZWXFOU8yejRGjxgB8wEDMJbnxXht7ty5A5VKBbVajeTkZF6PG3769CmCgoIwd+5czJw5k3MO6/3GmkQiwYMHD/D48WOoVCpcvXoVI0eO5JwnxPayrklfbTQxMcHEiRNx9uxZ3ll3797VHAuHDh3ifEasTXV1NY4fPw7g2WlOlUql8wVmFhYWsLCw0HxP/NZbb/E6e9VT+pUPobdx5MiRqK+vx5MnT6BSqfDrr79i6NChnPM6k52djSlTpgimNhbHgpD7lddEwd3dHTdu3EBFRQVaWlqQkZGBWbNm8YnEzcpKVDJcd2HIkCGan99//32UlpZyylGr1YiIiICtrS1WrVrFqyZ97DeWHj58iBEjRkAkEgEAxowZw+k7tzZCbC/rmljm3b9/X/P9bFNTE/7zn/9gzJgxnGtrM3jwYM3Ps2fP5n1R3okTJzRv1ra2thCLxbh3755OGQMHDoSFhYXmDe3y5csYMWIE55qE3K+sCL2NDQ0NGDJkiOZOqZEjRzK5dqz9uJg8eTKnrwz0VRuLY0HI/crrnjdDQ0PExsbCz88PSqUSgYGBcHBw4JyXnZsLW2tr9O7dG6dycuD37rs6vT49PR2+vr6wsLBAVVUVIiMj4evri3HjxkGtVqOiooLzh3xRURGOHj0Ke3t7zW1lmzZtwjvvvKNzFov99vHHH8PZ2RkmJib46quvkJ6ejoaGBqxatQqmpqbYunUrbt68icjISJ3rq66uhlwux+rVq6FSqVBbW4uff/5Z55w2rMcJC6xrYpl39+5dbNiwASqVCiqVCjNmzMBf//pXnTKSk5Ph5eUFc3NzlJaWQiqVwsvLC87OzlCr1aisrMQ6HS4W7uzYSk1NRWpqKq5cuYKWlhYEBgbq2lQAwIoVK7Bnzx60trZiyJAhCAsL45QDCLtfWRF6G2/fvo1ff/0V/v7+UKlUuHPnzgu3Ev6RqKgouLm5YcCAATh58iSSk5Px1ltvYeTIkVCr1bh9+zanWxBZ1KavY0HI/WqgVqvV2v6lXC6HRCLhXOjz/mj1yMlz5yI9IQEikQjzVqxA/nffab3a24Dx6T+hrx7Z2a1uXI0fP55ZFgBs3ryZad7NmzeZfG/IevyyxHr1SNYreLK8YwIAMjMzmWW9q+MfEK9SeXk5HB0deecIeezu37+faR7r7/OFvHrkkydPmGXpg7b3XsFczJiZnQ03JycMHzYMgwcNgpeHB45lZXV3WYQQQshrTRATBbVaDWlCAjb985+abRuCg7EnKQkqlaobKyOEEEJeb4KYKFwpK4P/vHkYPGiQZpu5mRmWLlyIy1evdmNlhBBCyOuN3wP8GXFxcIBLJxdZrPT374ZqCCGEENJGEGcUCCGEECJMr/SMQsmdO8yyJk6cyCwLYH+XAmus71Qguvuju3Z0IfS7FFjz8PDo7hIII8uXL2eax3el2+ctXbqUad6SJUuY5vVEdEaBEEIIIVrRRIEQQgghWtFEgRBCCCFa0USBEEIIIVrRRIEQQgghWvGeKOTk5MDFxQWOjo6Ijo7mXZBSqcSiRYs4LQyzZcsWnDlzBt98841mW2hoKL799lscPnwYUqkUxsbGnGtj2VbW+23SpEkIDQ1FSEgI5s+fr1kdTSh5rNvLAquaLsnl+PuHH76w/YPVq3FRhwVn4uPjce3aNZw7d06z7ZNPPkFpaSny8vKQl5enWZDsj6SkpKCuru6FBW9CQ0NRVlaG0tJSnRbVYZ3XRqFQYP78+fDx8YGvry8OHjyoc8bzWI+1P/PY1UdeSEgIbGxsMGnSJN51AcCjR48glUqxZs0ahISE4JdfftHp9SyPKwAICgpCQkICdu7cqdnm4eGBnTt3Ii0tDdbW1jrV155Q+5XXREGpVGLt2rXIzMyETCZDRkYG76Vr09PTOe/orKwshIeHd9hWVFSEf/zjH/D390dVVRXnFe5YtpX1fuvfvz88PT2RmJiIL7/8Er169YKTk5Ng8vQxTvhiWZOroyN6i8Uoksk02y7J5VAqlXBzdu5yTnp6eqeLfyUmJsLHxwc+Pj744YcfupSVlpaG6dOnd9jm6+uLOXPmwNXVFU5OTti9e3eXa2Od18bQ0BBbt25FXl4eTp8+jbS0NFy/fl3nnDasx9qffezqI2/x4sU4evQo59c/7+DBg3Bzc8P+/fsRFxeH4cOH6/R6lscVAOTn57/woatQKLBv3z5cu3ZNp9raE3K/8pooFBcXQyKRwNraGmKxGAsWLMDp06c559XV1aGgoADvv/8+p9eXlJSgvr6+w7aioiIolUoAQGlpKSwtLTlls2wr6/0GAL169YJIJNL8b0NDg2Dy9NFevljXtC0iApExMZrfI2NiEKnDMs4AcP78eWbPQ8jPz8dvzz33ITg4GFKpFC0tLQCeLWfdXXltBg8eDBcXFwCAsbExbGxsUFtbq3NOG9b9+jqMXdZ5Xl5ezJ5L09jYCLlcjmnTpgEARCKRzmeFWR5XAHDt2jU0NjZ22FZTU4Pbt2/zyhVyv/KaKNTU1HSY3VlZWUGhUHDOi46OxkcffYRevfRz6YSfnx/Onz/P6bUs28p6vzU0NODcuXNYt24d1q9fj6amJpSXlwsmj3V7WWBdk72tLSzNzXG2sBBFMhn6GhnBmcFS2cCzU535+fmIj4+Hqakp5xw7Ozt4e3ujsLAQubm5cHd351UX67yqqiqUlpbCzc2Ncwbrfn0dxq4Q29imrq4Opqam2LdvH9auXYv4+Hg0NTUxyWZ1XLEi5H4VzMWMZ8+ehZmZGRw6WfOBhaVLl6K1tRX/+te/9JLfnfr06YO//OUviI2NRXR0NMRiseavNCHkvS62hocjKjYW2/bsQeRzX4FxlZqaCjc3N0yePBm3b9/G9u3bOWcZGhrCzMwMnp6eWL9+PY4cOcKrNpZ5jY2NCAoKQlRUFPr378+rLvLnoVQqUV5ejunTpyMuLg59+vTBsWPHeOeyPK5eB7wmCsOGDUN1dbXmd4VCASsrK05ZJSUlyMvLw8yZM7Fx40YUFxdjy5YtfMrTmDVrFry8vBAZGck5g2VbWWYBgEQiwYMHD/D48WOoVCpcvXoVI0eOFEwe6/ayoI+aJKNHY/SIETAfMABjGT2W9u7du1CpVFCr1Th06BCvv7arq6tx/PhxAM9OS6pUKlhYWHR73tOnTxEUFIS5c+di5syZnOsB2Pfr6zB2hdjGNhYWFrCwsMDYsWMBAG+99Ravs5ttWB5XrAi5X3lNFNzd3XHjxg1UVFSgpaUFGRkZmDVrFqessLAwZGdn48yZM5BKpfDw8MCOHTv4lAcA8PT0hL+/P9avX4/m5mbOOSzbyjILAB4+fIgRI0ZAJBIBAMaMGcPp+2J95bFuLwv6qulmZSUqa2oYVPjM4MGDNT/Pnj2b18VNJ06cwJQpUwAAtra2EIvFuHfvXrfmqdVqREREwNbWFqtWreJcSxvW/fo6jF0htrHNwIEDYWFhofnAu3z5MkaMGME7l+VxxYqQ+5XXPW+GhoaIjY2Fn58flEolAgMD9fbVQVdERUXBzc0NAwYMwMmTJ5GcnIyAgACIxWLs27cPwLMLGr/44guds1m2lfV+q66uhlwux+rVq6FSqVBbW4uff/5ZMHlCGyf6qik7Nxe21tbo3bs3TuXkwO/dd3V6fXJyMry8vGBubo7S0lJIpVJ4eXnB2dkZarUalZWVWNfFCyTT09Ph6+sLCwsLVFVVITIyEqmpqUhNTcWVK1fQ0tKi0x1ArPPaFBUV4ejRo7C3t9fcorZp0ya88847OmcB7Pv1dRi7rPOWL1+OgoIC3L9/Hw4ODti4cSMCAgI4561YsQJ79uxBa2srhgwZovOt8yyPK+DZRbz29vYwNjZGXFwcjh8/jsbGRixZsgT9+/fHunXrUFlZqfPtiELuVwO1Wq3W9i/lcjkkEgnnQp+n6/2vL7N69WpmWQCQm5vLNI+19vfsCs3mzZuZ5t28eRP2DC4EZD1+/2j1yMlz5yI9IQEikQjzVqxA/nffwcDAoNP/rxmP2007I/TVI2sYnmUR8kqv5eXlcHR05J3DeuyyxOfMbGfy8vKY5rFePXL27NnMspKSkphl6YO2917BXMxISE+WmZ0NNycnDB82DIMHDYKXhweOZWV1d1mEEMIbTRQI4UmtVkOakIBN//ynZtuG4GDsSUqCSqXqxsoIIYQ/migQwtOVsjL4z5uHwYMGabaZm5lh6cKFuHz1ajdWRggh/PF7gD8hBC4ODnDp5CKhlf7+3VANIYSwRWcUCCGEEKLVKz2jMI7jOgudeVfHW896ut9//51Z1oABA5hlvU6azMyYZd28eZNZFiD8Pn3+2fh8CPmuB6FieadCSkoKsywAWLdoEdM81uLj47u7hG5HZxQIIYQQohVNFAghhBCiFU0UCCGEEKIVTRQIIYQQohVNFAghhBCiFe+JQk5ODlxcXODo6KjzIhhtLsnl+PuHH76w/YPVq3HxyhXOtU2aNAmhoaEICQnB/PnzYWjI7yYPFm3VRxYA+Pj4YOPGjdi0aRN8fX155wl537HCuiaWeSEhIbCxscGkSZM4vT4lJQV1dXW48tzxExoairKyMpSWlmLXrl3dltdec3Mz5s2bBz8/P8yYMQN79+7llNNGyP3KipDGWmfc3NwQEBCAgIAAzJw5E2+88YbOGaw+F+Lj43Ht2jWcO3dOs+2TTz5BaWkp8vLykJeXp1mQTFes951Qxy6viYJSqcTatWuRmZkJmUyGjIwMTst1ujo6ordYjCKZTLPtklwOpVIJN2dnTrX1798fnp6eSExMxJdffolevXrBicdCPKzayjoLAIYOHYpJkyYhJiYGu3btgqOjIywsLDjnCXnfscK6JtZ5ixcvxtGjRzm/Pi0tDdOnT++wzdfXF3PmzIGrqyucnJywe/fubstrTywW49ChQzh16hROnjyJs2fPQtbuvUAXQu9XFoQ21p5nbGyM8ePHIz09HYcOHYKBgQHGjh2rcw6rz4X09HQsWLDghe2JiYnw8fGBj48PfvjhB53rA9juOyGPXV4TheLiYkgkElhbW0MsFmPBggU4ffo0p6xtERGIjInR/B4ZE4NIHZb+7EyvXr0gEok0/9vQ0MA5i2VbWWYBz9ZWv3XrFp4+fQqVSoUbN27A1dWVcx4g3H3HCuuaWOd5eXnxel5Afn4+fntutcvg4GBIpVK0tLQAAO7evdttee0ZGBigX79+AIDW1la0trZqXXXzjwi9X1kQ2ljrTK9evWBoaAgDAwOIRCLOz9Fg8blw/vx5va2uynLfCXns8poo1NTUYPjw4ZrfraysoFAoOGXZ29rC0twcZwsLUSSToa+REZx5LDXc0NCAc+fOYd26dVi/fj2amppQXl7OOY9lW1lmAUBtbS0kEgn69u0LkUgEBwcHXg/gEfK+Y4V1TUJs4/Ps7Ozg7e2NwsJC5Obmwt3dXTB5SqUSfn5+8PT0hJeXF8aNG8cp53XoVyHW1N6jR4/w888/IygoCKtWrUJzczNu3brFKYv150J7QUFByM/PR3x8PExNTZlk8iHksSuotR62hodj1SefQCwWIzYykldWnz598Je//AWxsbFoamrCBx98ABcXF1y+fJlRtcJRV1eHH374ASEhIWhuboZCoYBareac9zrtu9eJoaEhzMzM4OnpCQ8PDxw5cgRjxowRRN4bb7yBU6dOob6+HmvWrMH169dhZ2fHuTbSfXr37g2JRIKUlBQ0Nzdj9uzZsLe353zam+XnQpvU1FRER0dDrVZj8+bN2L59O/7ZbvVX0hGvMwrDhg1DdXW15neFQgErKyvOeZLRozF6xAiYDxiAsTY2fEqDRCLBgwcP8PjxY6hUKly9ehUjR47knMeyraz3GwAUFhYiOjoa+/btw+PHj3Hnzh3OWULed6ywrkmIbXxedXU1jh8/DuDZaUmVSsXrWhbWeQBgYmKCiRMn4uzZs5xe/zr0qxBram/kyJGor6/HkydPoFKp8Ouvv2Lo0KGc81h+LrS5e/cuVCoV1Go1Dh06BDc3Nya5fAh57PKaKLi7u+PGjRuoqKhAS0sLMjIyMGvWLD6RuFlZicqaGl4ZAPDw4UOMGDECIpEIADBmzBjO36ECbNuqj/1mbGwM4Nlz8F1dXfHf//6Xc5aQ9x0rrGsSYhufd+LECUyZMgUAYGtrC7FYjHv37nV73v3791FfXw8AaGpqwn/+8x/OZyZeh34VYk3tNTQ0YMiQIZo7pUaOHPnC9S26YvW50Gbw4MGan2fPnt3tF6gCwh67vL56MDQ0RGxsLPz8/KBUKhEYGAiHTpbb7ars3FzYWlujd+/eOJWTAz8eCz9VV1dDLpdj9erVUKlUqK2txc8//8w5j2VbWe83AFi+fDn69esHpVKJjIwMPHnyhHOWkPcdK6xrYp23fPlyFBQU4P79+3BwcMDGjRsREBDQ5denp6fD19cXFhYWqKqqQmRkJFJTU5GamoorV66gpaUFgYGB3ZbX3t27d7FhwwaoVCqoVCrMmDEDf/3rXzllCb1fWRDaWHve7du38euvv8Lf3x8qlQp37tx54bZaXfD9XEhOToaXlxfMzc1RWloKqVQKLy8vODs7Q61Wo7KyEus4XjjPct8JeewaqF/yZbZcLodEIuFc6PP6/MGscvLcuUhPSIBIJMK8FSuQ/913Wq9+3pqYyKwuANi8eTPTPNY2bNjALIv1SoOs993Nmzdhz+CCJdbjlyWWq/kBwl898tdff2WW1f4CLaEpLy+Ho6Mj7xzWY7cnrx6py+cCAJjxuJW7MyxXeu3duzezLH3Q9t4rmCczZmZnw83JCcOHDcPgQYPg5eGBY1lZ3V0WIYSQbkKfC8IgiImCWq2GNCEBm9pddbohOBh7kpKgUqm6sTJCCCHdgT4XhEMQE4UrZWXwnzcPgwcN0mwzNzPD0oULcfnq1W6sjBBCSHegzwXhEMRzFFwcHODSyUUWK/39u6EaQggh3Y0+F4RDEGcUCCGEECJMr/SMQgmPhwA9j+uiMa8K66vai4qKmGUtXLiQWRYhXXGV4aliId/1IFQx7dZL4Ovzzz9nlgUAERERTPPy8vKY5gn9ToVXgc4oEEIIIUQrmigQQgghRCuaKBBCCCFEK5ooEEIIIUQrmigQQgghRCveE4WcnBy4uLjA0dER0dHRvAtSKpVYtGgRwsLCdH5tWFgYvv76ayQkJGi2eXl54csvv0RmZiZseC5RyrKtISEhsLGxwaRJkzi9fsuWLThz5gy++eYbzbbQ0FB8++23OHz4MKRSqWZFSV3duXMHMTExmn82b97MednfNqzHCQusaxLS+EhJSUFdXd0Li/GEhoairKwMpaWl2LVrV7fltffo0SNIpVKsWbMGISEh+OWXXzjltBFyv7LCuiZPT0+EhIQgNDSU05jrSePtgw8+wNKlS7F8+XKsXLmSU0Z7LPtCqGOX10RBqVRi7dq1yMzMhEwmQ0ZGBu/lOtPT02Ftbc3ptT/++CO2bdvWYdutW7ewc+dOyOVyXnWxbuvixYtx9OhRzq/PyspCeHh4h21FRUX4xz/+AX9/f1RVVXFezc/S0hIRERGIiIhAeHg4xGIxnHgstKKPccIX65qENj7S0tIwffr0Dtt8fX0xZ84cuLq6wsnJCbt37+62vPYOHjwINzc37N+/H3FxcbxufxR6v7LAuiZLS0u8+eabSEpKwv79+2FnZwczMzOdMnrSeAOAuLg4pKSkICkpiXMGwLYvhDx2eU0UiouLIZFIYG1tDbFYjAULFuD06dOc8+rq6lBQUID333+f0+vlcjkaGho6bKuuroZCoeBcUxvWbfXy8sLAgQM5v76kpAT19fUdthUVFUGpVAIASktLYWlpyTm/za+//gpzc3Od3zjaY73vWGBdk9DGR35+Pn57brXW4OBgSKVStLS0AHi2vHN35bVpbGyEXC7HtGnTAAAikYjzmTBA+P3KAuuaBg0ahOrqajx9+hQqlQoVFRU6L0fcU8Ybayz7Qshjl9dEoaampsPs38rKiteHcnR0ND766CP06iW8SydYt1Xf/Pz8cP78ed45MpkM48eP55UhxH3HuiYhtvF5dnZ28Pb2RmFhIXJzc+Hu7t7teXV1dTA1NcW+ffuwdu1axMfHo6mpiXNNr0O/sq6prq4Oo0aNgpGREUQiEezs7GBiYsK7TiGOtzYff/wxVqxYgZMnT/KqiWVfCHnsCmKtBwA4e/YszMzM4ODggJ9//rm7y+nRli5ditbWVvzrX//ildPa2gq5XI5Zs2Yxqox0J0NDQ5iZmcHT0xMeHh44cuQIxowZ0615SqUS5eXlWLFiBcaOHYvk5GQcO3YM//jHPzjXRXRz7949FBQUIDAwEC0tLaitrYVareadK8TxBgAJCQkYNGgQHjx4gIiICIwaNQqurq6c63od8PrTfdiwYaiurtb8rlAoYGVlxSmrpKQEeXl5mDlzJjZu3Iji4mJs2bKFT3lMsWyrPs2aNQteXl6IjIzknfXLL79g+PDh6N+/P68cIe471jUJsY3Pq66uxvHjxwE8Oy2pUqlgYWHRrXkWFhawsLDA2LFjAQBvvfUWysvLOdf0OvSrPmq6ePEiEhMTkZqaiqamJty7d49vmYIcb8Czr1oAYODAgfD29uZ1HQDLvhDy2OU1UXB3d8eNGzdQUVGBlpYWZGRkcP7rMywsDNnZ2Thz5gykUik8PDywY8cOPuUxxbKt+uLp6Ql/f3+sX7+eyVoTLL52AIS571jXJMQ2Pu/EiROYMmUKAMDW1hZisZjXBwKLvIEDB8LCwkLzhnb58mWMGDGCc02vQ7/qo6Z+/foBAExNTWFvb//C3QZcCHG8PXnyBI8fP9b8XFxczPnieYBtXwh57PL66sHQ0BCxsbHw8/ODUqlEYGCgzhfBsPTxxx/D2dkZJiYm+Oqrr5Ceno6GhgasWrUKpqam2Lp1K27evMnpr23WbV2+fDkKCgpw//59ODg4YOPGjQgICOjy66OiouDm5oYBAwbg5MmTSE5ORkBAAMRiMfbt2wfg2QWNX3zxBaf6mpubcf36dcyfP5/T69sT2jjRR01CGx/p6enw9fWFhYUFqqqqEBkZidTUVKSmpuLKlStoaWnR6a4Y1nntrVixAnv27EFrayuGDBnC6dboNkLvVxb0UdOiRYtgZGQElUqFrKwsna8T6Snj7cGDB/j0008BPPvaa+rUqZg4caLOOW1Y9oWQx66B+iVfRsnlckgkEs6FPo/v/dHtffbZZ8yyACAjI4NpHuvVI9977z1mWaxXj1yzZg3TvJs3b8Le3p53DuvxyxLr8TFgwACmeaxlZmYyy3r33XeZZbFWXl4OR0dH3jmsx+7OnTuZZbFePZI11qtHTpgwgWmekGl77xXe7QWEEEIIEQyaKBBCCCFEK5ooEEIIIUQrmigQQgghRKtX+sClwYMHM8s6d+4csyzg2eOPWTp48CDTPJZYX3xICBE2Xe6Y+SM5OTnMsgDgwoULTPN8fHyY5i1ZsoRZ1iGplFkWADTxeLS+LuiMAiGEEEK0ookCIYQQQrSiiQIhhBBCtKKJAiGEEEK0ookCIYQQQrTiPVHIycmBi4sLHB0dER0dzTlHoVBg/vz58PHxga+vL6e7BuLj43Ht2rVO74gICQnBb7/9BjMeV4l+8MEHWLp0KZYvX46VK1fq/PqgoCAkJCR0eJxqv379sGHDBnzxxRfYsGED+vbt26WsLVu24MyZM/jmm28020JDQ/Htt9/i8OHDkEqlMDY21rnGNqz6VV95LAi5jSEhIbCxscGkSZM4vT4lJQV1dXUvLO4TGhqKsrIylJaWYteuXd2W196jR48glUqxZs0ahISE8H7Uu5D7lRWWNTU3N2PevHnw8/PDjBkzsHfvXp0zOns/WrlyJQ4fPoxDhw5h7969Oq30yHK8sR67nb2Pe3h4YOfOnUhLS+O8yNQluRx///DDF7Z/sHo1LnJcpIvVOOE1UVAqlVi7di0yMzMhk8mQkZHBeclOQ0NDbN26FXl5eTh9+jTS0tJw/fp1nTLS09OxYMGCF7ZbWVlhypQpqKqq4lRbe3FxcUhJSUFSUpLOr83Pz3+hs2bPno2rV69iw4YNuHr1KmbPnt2lrKysLISHh3fYVlRUhH/84x/w9/dHVVUV50V6WParPvJYEHobFy9ejKNHj3J+fVpaGqZPn95hm6+vL+bMmQNXV1c4OTlh9+7d3ZbX3sGDB+Hm5ob9+/cjLi4Ow4cP55QDCL9fWWBdk1gsxqFDh3Dq1CmcPHkSZ8+ehUwm0ymjs/ejw4cPw9/fHwEBATh37hw+7ORDUBuW44312O3sfVyhUGDfvn24du1al3Oe5+roiN5iMYra7ftLcjmUSiXcnJ11zmM5TnhNFIqLiyGRSGBtbQ2xWIwFCxbg9OnTnLIGDx4MFxcXAICxsTFsbGxQW1urU8b58+fx4MGDF7bv2LEDkZGReMn6V6/EtWvX0NjY2GGbm5sb8vPzATwbgG+++WaXskpKSlBfX99hW1FREZRKJYBnK0daWlpyqpNlv+ojjwWht9HLywsDBw7k/Pr8/Hz89ttvHbYFBwdDKpWipaUFAHD37t1uy2vT2NgIuVyOadOmAQBEIhGvM2FC71cWWNdkYGCgWWa6tbUVra2tMDAw0Cmjs/ejtuWcAaBPnz465bEcb6zHbmfv4zU1Nbh9+3aXM7TZFhGByJgYze+RMTGIXLeOUxbLccJrolBTU9Nh9m9lZQWFQsEnEgBQVVWF0tJSuLm58c6aMWMGamtrIZfLeWcBz5ayXrFiBU6ePMkkz8TEBA8fPgQAPHz4ECYmJkxy/fz8cP78eU6vZd2v+honfLwObXyenZ0dvL29UVhYiNzcXLi7u3d7Xl1dHUxNTbFv3z6sXbsW8fHxOi9x3N7r0K/6qEmpVMLPzw+enp7w8vLCuHHjeFb5zOrVq5GZmYn33nuP01nY9liOX9bHAiv2trawNDfH2cJCFMlk6GtkBGeOK+myHCev9MmMXdHY2IigoCBERUWhf//+vLKMjIywbt06zJ07l0ltCQkJGDRoEB48eICIiAiMGjUKrq6uTLJZWrp0KVpbW/Gvf/2ru0shAmJoaAgzMzN4enrCw8MDR44cwZgxY7o1T6lUory8HCtWrMDYsWORnJyMY8eO4R//+Afnuoju3njjDZw6dQr19fVYs2YNrl+/Djs7O965iYmJSExMREBAAObPn8/ribUsxy/rY4GlreHhWPXJJxCLxYiNjOzucgDwPKMwbNgwVFdXa35XKBSwsrLinPf06VMEBQVh7ty5mDlzJp/SAACjR4/GyJEjkZ+fj5KSEgwbNgy5ubmcT8kPGjQIADBw4EB4e3sz+a6yvr4epqamAABTU9MXTt/patasWfDy8kIkjwHGul9Z57HwOrTxedXV1Th+/DiAZ6clVSqVTheY6SPPwsICFhYWGDt2LADgrbfeQnl5OeeaXod+1WdNJiYmmDhxIs6ePcskr012djamTJnCK4Pl+GV9LLAkGT0ao0eMgPmAARhrY8M5h+U44TVRcHd3x40bN1BRUYGWlhZkZGRg1qxZnLLUajUiIiJga2uLVatW8SlLo6ysDGPHjsW4ceMwbtw41NTUwNfXF3fu3NE568mTJ5rv3J48eYLi4mLOV7e2J5PJ4O3tDQDw9vbGxYsXOWd5enrC398f69evR3NzM+cclv2qjzwWXoc2Pu/EiROaN2tbW1uIxWLcu3evW/MGDhwICwsLzRva5cuXMWLECM41vQ79yrqm+/fva/5AaWpqwn/+8x8mf12378fJkyfj1q1bvPJYjl/WxwJrNysrUVlTwyuD5Tjh9dWDoaEhYmNj4efnB6VSicDAQDg4OHDKKioqwtGjR2Fvb4+pU6cCADZt2oR33nmnyxnJycnw8vKCubk5SktLIZVKcfjwYU71PO/Bgwf49NNPATw7XTp16lRMnDhRp4zg4GDY29vD2NgYcXFxOH78OE6fPo2QkBBMnjwZ9+/fR0JCQpeyoqKi4ObmhgEDBuDkyZNITk5GQEAAxGIx9u3bB+DZBY1ffPGFbg0F237VRx4LQm/j8uXLUVBQgPv378PBwQEbN27UaWGf9PR0+Pr6wsLCAlVVVYiMjERqaipSU1Nx5coVtLS06HRXDOu89lasWIE9e/agtbUVQ4YMQVhYGKccQPj9ygLrmu7evYsNGzZApVJBpVJhxowZ+Otf/6pTRmfvR2+99RZGjhwJtVqN27dv63QLIsvxxnrsdvY+3tjYiCVLlqB///5Yt24dKisrOd+OmJ2bC1tra/Tu3RuncnLg9+67nHJYjhMD9UtuBZDL5ZBIJJyCO9PZHQlcOTo6MssCns0wWWK9eqSut4q+TG5uLrMsfbh58ybsOV7A0x7r8csSnzM+nRkwYADTPNYyMzOZZb3L8Y3zVSgvL2fy3sR67LY/Bc2Xv78/syyA/eqRrL3q1SMnz52L9IQEiEQizFuxAvnffaf1LhTWq0dqe++lJzMSQgghApCZnQ03JycMHzYMgwcNgpeHB45lZXV3WTRRIIQQQrqbWq2GNCEBm/75T822DcHB2JOUBJVK1Y2V0USBEEII6XZXysrgP28eBv/f3XUAYG5mhqULF+Ly1avdWJkAn6NACCGEvG5cHBzg0snFhisZXxPCBZ1RIIQQQohWr/SMAp9n1z8vLS2NWRYALFu2jGmel5cX0zwh36nQ57nnqAtFL6WSaW0srzDu3bs3syyA7ZXZAPD1118zzfvhhx+YZf2N8eN2WV85LkR8Ftp6Huv3IpZ3ZADPbtVkieWxMHr0aGZZALB582amedrQGQVCCCGEaEUTBUIIIYRoRRMFQgghhGhFEwVCCCGEaEUTBUIIIYRoxXuikJOTAxcXFzg6OnJeBEMfWQDw6NEjSKVSrFmzBiEhIfjll190er1UKkVRURG+//57zbbw8HBkZWXh1KlTSEtL02nJ6qCgICQkJGDnzp2abf369cOGDRvwxRdfYMOGDejbt69ONbZhve9Y5V2Sy/H3Dz98YfsHq1fj4pUrfErkTF81CelY6GyseXh4YOfOnUhLS9N55dOUlBTU1dXhynP7JzQ0FGVlZSgtLdVp0Z/Fixdjx44d2Lhxo2Zb3759sWbNGnz66adYs2YNjIyMdKqxJ/QrK0I93lnnNTc3Y968efDz88OMGTOwd+9enTOEfiy05+npiZCQEISGhmLSpEmcMtpj1Q+8JgpKpRJr165FZmYmZDIZMjIyUFZW1u1ZbQ4ePAg3Nzfs378fcXFxOt8idOzYsRdum0xOTsasWbPg5+eHn376Cf9s97jNP5Kfn/9CZ82ePRtXr17Fhg0bcPXqVcyePVunGgH2+45lnqujI3qLxSiSyTTbLsnlUCqVcHN25lwjH/qoSWjHQmdjTaFQYN++fbh27ZrONaWlpWH69Okdtvn6+mLOnDlwdXWFk5MTdu/e3eW8Cxcu4MCBAx22TZ06FdevX8f27dtx/fp1TJs2Tacahd6vrAj5eGedJxaLcejQIZw6dQonT57E2bNnIWvXv10h9GOhjaWlJd58800kJSVh//79sLOzgxmPW3dZ9gOviUJxcTEkEgmsra0hFouxYMECnD59utuzAKCxsRFyuVzzZiMSiWBsbKxzTb///nuHbY8ePdL8bGRkhJcsvvmCa9euobGxscM2Nzc35OfnA3g2oN98802damyrk+W+Y523LSICkTExmt8jY2IQuW4d5zwWWNcktGOhs7FWU1OD27dvc6opPz8fvz33TIrg4GBIpVK0tLQAeLZccVeVl5fj8ePHHbY5OzujqKgIwLNl5505fLgLuV9ZEfrxzjLPwMAA/fr1AwC0traitbVV60qK2gj9WGgzaNAgVFdX4+nTp1CpVKioqOC1fDjLfuA1UaipqenwV7qVlRUUCkW3ZwFAXV0dTE1NsW/fPqxduxbx8fFoamrinNdeREQECgoKMGfOHMTFxfHKMjExwcOHDwEADx8+hImJic4ZrPcd6zx7W1tYmpvjbGEhimQy9DUygjODZaT5YF2TkI8FfbGzs4O3tzcKCwuRm5sLd54PQurfvz/q6+sBAPX19ejfv7/OGULuV1aEfryzzlMqlfDz84Onpye8vLwwbtw4zln6wuJYqKurw6hRo2BkZASRSAQ7OztOnwdtWPbDn3atB6VSifLycqxYsQJjx45FcnIyjh07hn/84x+8s2NiYhATE4PVq1djyZIlnL43e91sDQ/Hqk8+gVgsRmxkZHeXA0CYNfUkhoaGMDMzg6enJzw8PHDkyBGMGTOmu8uifv2TeeONN3Dq1CnU19djzZo1uH79Ouzs7Lq7rA5YHAv37t1DQUEBAgMD0dLSgtraWp3OWOsTrzMKw4YN6/D4TYVCASsrq27PAgALCwtYWFhg7NixAIC33noL5eXlnPM6k5mZ+cJ3Vbqqr6+HqakpAMDU1FTzF5UuWO871nkAIBk9GqNHjID5gAEYa2PDK4sVljUJ+VjQl+rqahw/fhzAs9OcKpUKFhYWnPMaGho0f0GZmJigoaGBU45Q+5UVoR/v+tpnJiYmmDhxIs6ePcs7izVWx8LFixeRmJiI1NRUNDU14d69e5xrYtkPvCYK7u7uuHHjBioqKtDS0oKMjAzMmjWr27OAZ+tKWFhYaHbU5cuXMWLECM55bdo/q3vatGm8Jx8ymQze3t4AAG9vb1y8eFHnDNb7jnVem5uVlaisqeGdwxKrmoR8LOjLiRMnMGXKFACAra0txGIxrze20tJSTJgwAQAwYcKEF64q14UQ+5UVoR/vLPPu37+v+eOpqakJ//nPfwRx1up5rI6FtusxTE1NYW9vz+sYYNkPvL56MDQ0RGxsLPz8/KBUKhEYGMj54guWWW1WrFiBPXv2oLW1FUOGDEFYWJhOr4+Li8PEiRMxcOBAFBQUYO/evfD19cWYMWOgUqmgUCjw2WefdTkvODgY9vb2MDY2RlxcHI4fP47Tp08jJCQEkydPxv3795GQkKBrM5nvO330RXZuLmytrdG7d2+cysmB37vv8spjgWVNQjsWOhtrjY2NWLJkCfr3749169ahsrKyy7dMpaenw9fXFxYWFqiqqkJkZCRSU1ORmpqKK1euoKWlBYGBgV2uLzAwEDY2NjA2NkZUVBTOnDmDf//731i2bBk8PT3x4MEDfPXVVzq1uY1Q+5UVoR/vLPPu3r2LDRs2QKVSQaVSYcaMGfjrX/+qU4bQj4X2Fi1aBCMjI6hUKmRlZfG6ro5lPxioX/IliFwuh0Qi4VyoPuXk5DDNCw8PZ5rHevXIpKQkpnksdWWFxslz5yI9IQEikQjzVqxA/nffab16uezhQ9gzuNix7PJl2L/k9J8uNQHCXmVw5cqVTPNYrx6py23Ef2Rfu2cvdKY7+7W8vByOjo68c4T83sva67R6pC5/WHYF69Ujb9682el7Lz2ZkehdZnY23JycMHzYMAweNAheHh44lpVFNRHmqF8JYY8mCkSv1Go1pAkJ2NTuL8oNwcHYk5QElUpFNRFmqF8J0Q+aKBC9ulJWBv958zB40CDNNnMzMyxduBCXr16lmggz1K+E6Mef9jkKRBhcHBzg0skFNCv9/buhmmeEWBPhj/qVEP2gMwqEEEII0eqldz2UlJSgd+/er7IeQtDc3MzkMa00fsmrRmOX9GTaxu9LJwqEEEIIeb3RVw+EEEII0YomCoQQQgjRiiYKhBBCCNGKJgqEEEII0YomCoQQQgjRiiYKhBBCCNGKJgqEEEII0YomCoQQQgjRiiYKhBBCCNHqpYtClVy8iN6G7NaNUr3xBrOsu3fvMssCgKqqKqZ5rB+/6tDJYjdcGRgYMMvSh6dPnzJ7DK5IJOJfUA/A+gGrlZWVTPNGjRrFNE+oXoex+7///Y9pnlgsZpo3fPhwpnmvE23j96WzgN6GhrC3sGBWRJOZGbOs7OxsZlkAEBERwTRvzJgxTPMuXrzILEvoz5C/efMmkxyRSASJRMIkS+iam5uZ5n3xxRdM85KSkpjmCVV5eTmTHCGP3Y0bNzLNs7a2ZprHeuy+TrS999JXD4QQQgjRiiYKhBBCCNGKJgqEEEII0YrzROGSXI6/f/jhC9s/WL0aF69c4VUUIYQQQoSB80TB1dERvcViFMlkmm2X5HIolUq4OTtzyszJyYGLiwscHR0RHR3NtTQAwJ07dxATE6P5Z/PmzTh79qxOGSkpKairq8OVdhOfyMhIVFdXQyaTQSaTYcaMGV3Ok0qlKCoqwvfff6/ZFh4ejqysLJw6dQppaWmwtLTUqcY2ISEhsLGxwaRJkzi9/nks+0IfeSwIuY0ss1iMjaCgICQkJGDnzp2abR4eHti5cyfS0tJ4XZAm5H7QRx4LQmtjWFgYvv76ayQkJGi2LVu2DAcOHMC+ffuwefNm9OvXr8t5ixcvxo4dOzpcONm3b1+sWbMGn376KdasWQMjIyOd6wSEt+96Qm28vnrYFhGByJgYze+RMTGIXLeOU5ZSqcTatWuRmZkJmUyGjIwMlJWVca7N0tISERERiIiIQHh4OMRiMZycnHTKSEtLw/Tp01/YHhsbi/Hjx2P8+PEdPvT/yLFjx7Bs2bIO25KTkzFr1iz4+fnhp59+wj//+U+damyzePFiHD16lNNrn8e6L1jnsSDkNrKujcXYyM/Pf+GNRqFQYN++fbh27RrnXCH3gz7yWBBiG3/88Uds27atw7aSkhKEhIQgLCwMCoUC8+fP73LehQsXcODAgQ7bpk6diuvXr2P79u24fv06pk2bplONgDD3XU+ojddEwd7WFpbm5jhbWIgimQx9jYzgbG/PKau4uBgSiQTW1tYQi8VYsGABTp8+zac8jV9//RXm5uYw0/H2zPz8fPz2229MagCetfH333/vsO3Ro0ean42MjDjfD+/l5YWBAwfyKU+DdV/os2+FUhPLPNa1sRgb165dQ2NjY4dtNTU1uH37Nq9cIfeDPvJYEGIb5XI5GhoaOmyTyWRQqVQAno0fCx1utS8vL8fjx487bHN2dkZRUREAoKioCM4czlwLcd/1hNp4X8y4NTwcUbGx2LZnDyLDwznn1NTUdHhQhpWVFRQKBd/yADwbsOPHj2eSBQChoaG4dOkSUlJSMGDAAN55ERERKCgowJw5cxAXF8c7jy/WfaHPvuVKyG0U4v7SFyH3gz7yWOiJbZw2bRr++9//8sro378/6uvrAQD19fXo37+/zhlC3ndCro33REEyejRGjxgB8wEDMNbGhm8cc62trZDL5XB1dWWSd+DAAUgkEowbNw61tbWIaffVC1cxMTF4++23kZmZiSVLljCokhBChGHhwoVQKpXIzc3t7lIIR0xuj7xZWYnKmhpeGcOGDUN1dbXmd4VCASsrK76l4ZdffsHw4cM5zT47c+fOHahUKqjVaiQnJ2PChAlMcgEgMzOz02siXjXWfaGvvuVDyG0U4v7SFyH3gz7yWOhJbXznnXfg4eHB5A+qhoYGmJiYAABMTExe+KqjK4S874RcG++JQnZuLmytrTHO0RGncnI457i7u+PGjRuoqKhAS0sLMjIyMGvWLL7lMf/aYciQIZqf33//fZSWlvLKGz16tObnadOmMXsELB+s+0JffcuHkNsoxP2lL0LuB33ksdBT2ujm5oa5c+fi888/Z/KI8dLSUs0fZhMmTOhwN1pXCXnfCbk23is+7di3D+kJCRCJRJi3YgVmT5vGadEhQ0NDxMbGws/PD0qlEoGBgbwXQmpubsb169d1utq2vfT0dPj6+sLCwgJVVVWIjIyEr68vxo0bB7VajYqKCqxatarLeXFxcZg4cSIGDhyIgoIC7N27F76+vhgzZgxUKhUUCgU+++wzTrUuX74cBQUFuH//PhwcHLBx40YEBARwymLdF/roW76E3EbWtbEYG8HBwbC3t4exsTHi4uJw/PhxNDY2YsmSJejfvz/WrVuHyspKnW/BEnI/6COPBSG28eOPP4azszNMTEzw1VdfIT09HfPnz4dIJMLnn38O4NkFjfv37+9SXmBgIGxsbGBsbIyoqCicOXMG//73v7Fs2TJ4enriwYMH+Oqrr7qlrfrKE3JtBuqXXGZfdvnySxeFyszOxk/nziEuKgoA8MmOHfBwdcX82bM7/f+zXBSqqwOuq2hRKOG4efMm7DnePdOeXC4X7MI6rLFeFIrrbbravE6LQjk6OvLOEfLYXbBgAdM8WhRKOLS993L+6kGtVkOakIBN7d5QNgQHY09SkuaWGEIIIYT0bJwnClfKyuA/bx4GDxqk2WZuZoalCxfi8tWrTIojhBBCSPfifI2Ci4MDXDr5vmOlvz+vggghhBAiHLR6JCGEEEK0ookCIYQQQrR66VcPqjfeYHqnQvuV5/j65ptvmGUBzx52xNKcOXOY5pk+95x9PpoEftcD0d13333HNG/cuHFM88ifx1XG16CxXjsjPj6eaR7LO9jkcjmzrFeJzigQQgghRCuaKBBCCCFEK5ooEEIIIUQrmigQQgghRCveE4WcnBy4uLjA0dFR5+e8P2/SpEkIDQ1FSEgI5s+fD0ND3R7zIJVKUVRUhO+//16zLTw8HFlZWTh16hTS0tJgaWnJub5Hjx5BKpVizZo1CAkJwS+//KLT61NSUlBXV9dhMZPIyEhUV1dDJpNBJpNhxowZOmVeksvx9w8/fGH7B6tX4yKHRVPasOxXfeSxIOQ2ssyqra3F1q1bNf8EBwcjh8cCbsCzBX8CAgIQEBCAmTNn4o033uCcJeR+0EceC0JrY2fvvW2WL1+O8vJyDBw4sMt5nb1XAkBoaCjKyspQWlqKXbt2vfIsgH1b2xNav7bhNVFQKpVYu3YtMjMzIZPJkJGRgbKyMk5Z/fv3h6enJxITE/Hll1+iV69ecHJy0inj2LFjWLZsWYdtycnJmDVrFvz8/PDTTz/xeob9wYMH4ebmhv379yMuLg7Dhw/X6fVpaWmdLiMdGxuL8ePHY/z48Z0OvpdxdXREb7EYRTKZZtsluRxKpRJuzs46ZbVh2a/6yGNByG1kXdvQoUMRFRWFqKgobNu2DWKxGG5ubpzzjI2NMX78eKSnp+PQoUMwMDDA2LFjOWUJuR/0kceCENvY2Xsv8Gzsvf3221AoFDrldfZe6evrizlz5sDV1RVOTk7YvXv3K88C2Le1jRD7tQ2viUJxcTEkEgmsra0hFouxYMECXre69OrVCyKRSPO/uq43XlxcjN9//73DtkePHml+NjIywkvWwHqpxsZGyOVyTJs2DQAgEolgbGysU0Z+fj5+++03Tv/9l9kWEYHIduu9R8bEIHLdOs55rPuVdR4LQm6jPvfX1atXYWlpCYuXLPbWFb169YKhoSEMDAwgEonQyPH2XSH3gz7yWBBiGzt77wWALVu2YNeuXTq/73b2XhkcHAypVIqWlhYAwN27d195FsC+re1zhdavbXhNFGpqajr8VW1lZcV5NtXQ0IBz585h3bp1WL9+PZqamlBeXs6nPI2IiAgUFBRgzpw5iIuL45RRV1cHU1NT7Nu3D2vXrkV8fDyampqY1BcaGopLly4hJSUFAwYM0Pn19ra2sDQ3x9nCQhTJZOhrZARnHqsvsuxXfeSxIOQ26nN/XbhwARMnTuSV8ejRI/z8888ICgrCqlWr0NzcjFu3bnHKEnI/6COPhZ7SxqlTp6Kurk7nr2i1sbOzg7e3NwoLC5Gbmwt3d3dBZAFs2irkfhXMxYx9+vTBX/7yF8TGxiI6OhpisRguLi5MsmNiYvD2228jMzMTS5Ys4ZShVCpRXl6O6dOnIy4uDn369MGxY8d413bgwAFIJBKMGzcOtbW1iGl3ZkAXW8PDERUbi2179iAyPJx3XeTPp7W1FSUlJfDw8OCV07t3b0gkEqSkpCApKQkikYjJsuDkz6NPnz4IDg5GbGwss0xDQ0OYmZnB09MT69evx5EjRwSRpY+2Cg2vicKwYcNQXV2t+V2hUMDKyopTlkQiwYMHD/D48WOoVCpcvXoVI0eO5FPeCzIzMzu9RqArLCwsYGFhofku9q233mJyxuPOnTtQqVRQq9VITk7GhAkTOOVIRo/G6BEjYD5gAMba2PCqiWW/6iOPBSG3UV/76/Llyxg1ahRMTU155YwcORL19fV48uQJVCoVfv31VwwdOpRTlpD7QR95LPSENo4cORIjRoxAVlYW8vLyMGTIEJw8eZLXV17V1dU4fvw4gGen1VUqFec8llms2irkfuU1UXB3d8eNGzdQUVGBlpYWZGRkYNasWZyyHj58iBEjRkAkEgF49thMXb430mb06NGan6dNm8b5w33gwIGwsLDQ7PjLly9jxIgRvOsbMmSI5uf3338fpaWlnLNuVlaisqaGd00s+1UfeSwIuY362l8svnYAnn1NOGTIEM1dSSNHjuR87Y2Q+0EfeSz0hDZev34dEyZMgI+PD3x8fHD79m387W9/w7179zhnnjhxAlOmTAEA2NraQiwWc85jmcWqrULuV87LTAPPTt/ExsbCz88PSqUSgYGBcOhk6emuqK6uhlwux+rVq6FSqVBbW4uff/5Zp4y4uDhMnDgRAwcOREFBAfbu3QtfX1+MGTMGKpUKCoUCn332Gaf6AGDFihXYs2cPWltbMWTIEISFhen0+vT0dPj6+sLCwgJVVVWIjIyEr68vxo0bB7VajYqKCqxatYpTbdm5ubC1tkbv3r1xKicHfu++yykHYNuv+shjQcht1Mf+am5uhlwuR2BgIK8cALh9+zZ+/fVX+Pv7Q6VS4c6dOy/cetZVQu4HfeSxIMQ2dvbem5GRwbmmzt4rU1NTkZqaiitXrqClpaXLY5llFsC+rW2E2K9tDNQvuURTLpdDIpFwLvR5Ql4UivX3S6wXhVL/wUUok+fORXpCAkQiEeatWIH8776DgYFBp/9flgt96cPNmzeZfOfNevwK2bfffss0j/XdOWvWrGGaJ1Tl5eVwdHTknSPkscuife3973//Y5rH2uu0KJS2917BXMxIuMvMzoabkxOGDxuGwYMGwcvDA8eysrq7LEIIIX8CNFHo4dRqNaQJCdjU7kFSG4KDsScpCSqVqhsrI4QQ8mdAE4Ue7kpZGfznzcPgQYM028zNzLB04UJcZrxuPCGEkNcPr4sZSfdzcXCASycXqKz09++GagghhPzZ0BkFQgghhGj1Ss8oBAcHM8uKiIhglgWA1yI5nWF5pSwg/DsViG6am5uZ5iUmJjLN27x5M9O8Bw8eMM1jietKf6+rQe2+5mSB9V0PrPuT5XMzWB/3vXv3ZpqnDZ1RIIQQQohWNFEghBBCiFY0USCEEEKIVjRRIIQQQohWNFEghBBCiFa8Jwo5OTlwcXGBo6MjoqOjOecoFArMnz8fPj4+8PX1xcGDB3nVFRISAhsbG0yaNIlzhlQqRVFREb7//nvNtvDwcGRlZeHUqVNIS0uDpaVlt+W1x6ofekoeC0JuI9/xu2XLFpw5c6bDmigrV67E4cOHcejQIezdu5fXkr+PHj2CVCrFmjVrEBISgl9++YVTDuvjnnUeQGO3K1iPt5SUFNTV1b2w2FhoaCjKyspQWlqKXbt2dSkrPj4e165dw7lz5zTbPvnkE5SWliIvLw95eXmYOnVql2tbvHgxduzYgY0bN2q29e3bF2vWrMGnn36KNWvWwMjIqMt57bH43GqP1TjhNVFQKpVYu3YtMjMzIZPJkJGRgbKyMk5ZhoaG2Lp1K/Ly8nD69GmkpaXh+vXrnGtbvHgxjh49yvn1AHDs2DEsW7asw7bk5GTMmjULfn5++Omnn/DPdo9OftV5bVj2Q0/IY0HobeQ7frOyshAeHt5h2+HDh+Hv74+AgACcO3cOH374Ief8gwcPws3NDfv370dcXByGDx/OKYf1cc86j8Zu17Aeb2lpaZg+fXqHbb6+vpgzZw5cXV3h5OSE3bt3dykrPT0dCxYseGF7YmKiZmnoH374ocu1XbhwAQcOHOiwberUqbh+/Tq2b9+O69evY9q0aV3Oa4/F51YbluOE10ShuLgYEokE1tbWEIvFWLBgAU6fPs0pa/DgwXBxcQEAGBsbw8bGBrW1tZxr8/Ly4n0/bXFxMX7//fcO2x49eqT52cjICC9ZfFPvee1zWfVDT8hjQeht5Dt+S0pKUF9f32Hb48ePNT/36dOHc3ZjYyPkcrnmzVAkEsHY2JhTFuvjnnUejd2uYT3e8vPzX1jBNDg4GFKpFC0tLQCAu3fvdinr/PnzTJ/jUV5e3qFtAODs7IyioiIAQFFREZydnTlls/jcasNynPCaKNTU1HT4S8LKygqKP1gOuSuqqqpQWlrK/CFIrERERKCgoABz5sxBXFxct+ex7geh57HwOrSxM6tXr0ZmZibee+89JCUlccqoq6uDqakp9u3bh7Vr1yI+Ph5NTU28a2N93LPIE2K/9qSxy2K8tbGzs4O3tzcKCwuRm5sLd3d3XnlBQUHIz89HfHw8TE1NeWX1799fM1Gqr69H//79eeWxwLJfBXcxY2NjI4KCghAVFSWInd2ZmJgYvP3228jMzMSSJUsEl0eINomJiZgzZw6ys7Mxf/58ThlKpRLl5eWYPn064uLi0KdPHxw7doxXXayP+57wPvI6YDHe2hgaGsLMzAyenp5Yv349jhw5wjkrNTUVbm5umDx5Mm7fvo3t27fzqu3PjtdEYdiwYaiurtb8rlAoYGVlxTnv6dOnCAoKwty5czFz5kw+pb0SmZmZL3yP1h15rPtB6HksvA5tfJns7GxMmTKF02stLCxgYWGBsWPHAgDeeustlJeXc66F9XHPMk+I/doTxy6f8damuroax48fB/DstLpKpeJ8Qe7du3ehUqmgVqtx6NAh3mexGhoaYGJiAgAwMTFBQ0MDrzwWWPYrr4mCu7s7bty4gYqKCrS0tCAjI4Pzc7HVajUiIiJga2uLVatW8SlLr0aPHq35edq0abzeIFnlseyHnpDHwuvQxueNGDFC8/PkyZNx69YtTjkDBw6EhYWF5k3o8uXLHbJ1wfq4Z50nxH7tKWOX1Xhrc+LECc1kw9bWFmKxGPfu3eOUNXjwYM3Ps2fP5n2BamlpKSZMmAAAmDBhwgt3a3QHlv3Ka1EoQ0NDxMbGws/PD0qlEoGBgXDoZMnjrigqKsLRo0dhb2+vuVVl06ZNeOeddzjlLV++HAUFBbh//z4cHBywceNGBAQE6JQRFxeHiRMnYuDAgSgoKMDevXvh6+uLMWPGQKVSQaFQ4LPPPuu2vDYs+6En5LEg9DbyHb9RUVFwc3PDgAEDcPLkSSQnJ+Ott97CyJEjoVarcfv27S7fXtaZFStWYM+ePWhtbcWQIUMQFhbGKYf1cc86j8Zu17Aeb+np6fD19YWFhQWqqqoQGRmJ1NRUpKam4sqVK2hpaUFgYGCXspKTk+Hl5QVzc3OUlpZCKpXCy8sLzs7OUKvVqKysxLp167pcW2BgIGxsbGBsbIyoqCicOXMG//73v7Fs2TJ4enriwYMH+Oqrr7qc1x6Lz602LMeJgfoll9nL5XJIJBJOwZ1heeVp3759mWUB7FePZE0ul3d3Ca/MzZs3YW9vzzuH9fhlifUqcu+99x7TPNarR3p4eDDNY4nlaoPl5eVwdHTknSPksevr68s078KFC0zzWK8e6e/vzyzr888/Z5YFsF89Utt7r+AuZiSEEEKIcNBEgRBCCCFa0USBEEIIIVrRRIEQQgghWtFEgRBCCCFa8bo9Ulcsr0ZleQcFAPzvf/9jmjd79mymeSyvkmd9pSzR3Xfffcc0j8/CR5159913mebt3LmTWdaAAQOYZQHAukWLmGX1UiqZZQmVnZ0d0zzWdz2w/mxgeUcc6/fePs+th6EvdEaBEEIIIVrRRIEQQgghWtFEgRBCCCFa0USBEEIIIVrRRIEQQjpxSS7H3z/88IXtH6xejYsCWPSHEG1Yj13eE4WcnBy4uLjA0dER0dHRgslSKBSYP38+fHx84Ovri4MHD+qckZKSgrq6ug4rgUVGRqK6uhoymQwymQwzZszocl5YWBi+/vprJCQkaLZ5eXnhyy+/RGZmJmxsbHSusU1ISAhsbGwwadIkzhntsewLfeSxINQ21tbWYuvWrZp/goODkZOTo1NGfHw8rl27hnPnzmm2ffLJJygtLUVeXh7y8vI0iyZxwXLfeXp6IiQkBKGhoUzGr5ubGwICAhAQEICZM2fijTfe4JTj6uiI3mIximQyzbZLcjmUSiXcnJ1518mH0MZuUFAQEhISOtzd4uHhgZ07dyItLQ3W1tY65XX23gsAoaGhKCsrQ2lpaZcXmWKZ9TwWx2p7rPqV9djlNVFQKpVYu3YtMjMzIZPJkJGRwXm5TpZZwLOVs7Zu3Yq8vDycPn0aaWlpOt9ClpaWhunTp7+wPTY2FuPHj8f48ePx/fffdznvxx9/xLZt2zpsu3XrFnbu3Ml70afFixfj6NGjvDLasO4L1nksCLmNQ4cORVRUFKKiorBt2zaIxWKdb9FKT0/HggULXtiemJgIHx8f+Pj44IcffuBUH8u2Wlpa4s0330RSUhL2798POzs7mJmZccoCAGNjY4wfPx7p6ek4dOgQDAwMMHbsWM552yIiEBkTo/k9MiYGkTqsNKgPQhy7+fn5L3ywKRQK7Nu3D9euXdO5ps7ee319fTFnzhy4urrCyckJu3fvfuVZz2NxrLZh3a8sxy6viUJxcTEkEgmsra0hFouxYMECnD59utuzgGfrjbu4uAB49uZhY2OD2tpanTLy8/PxG8P7VOVyORoaGjpsq66uhkKh4J3t5eXF7DkVrPuCdR4LPaWNV69ehaWlJSwsLHR63fnz55nfT96GZVsHDRqE6upqPH36FCqVChUVFbyXce7VqxcMDQ1hYGAAkUiExsZGzln2trawNDfH2cJCFMlk6GtkBGcGK5vyIcSxe+3atRf2c01NDW7fvs2pps7ee4ODgyGVStHS0gIAuHv37ivPehmux2ob1v3KcuzymijU1NRg+PDhmt+trKw4f+ixzHpeVVUVSktLmT04IzQ0FJcuXUJKSgrzh78IAeu+0GffctVT2njhwgVMnDiRd06boKAg5OfnIz4+HqamppwyWLa1rq4Oo0aNgpGREUQiEezs7GBiYsIpCwAePXqEn3/+GUFBQVi1ahWam5tx69YtznkAsDU8HFGxsdi2Zw8iw8N5ZbHQU8Yua3Z2dvD29kZhYSFyc3Ph7u4uiKw2fI9VffQDq7H7p7+YsbGxEUFBQYiKikL//v155x04cAASiQTjxo1DbW0tYtqd2iGEpdbWVpSUlMDDw4NJXmpqKtzc3DB58mTcvn0b27dvZ5LLx71791BQUIDAwEAsWbIEtbW1UKvVnPN69+4NiUSClJQUJCUlQSQSwZ7nGQDJ6NEYPWIEzAcMwFge1xERfgwNDWFmZgZPT0+sX78eR44cEUQWwP5YZYXV2OX1COdhw4ahurpa87tCoYCVlVW3Z7V5+vQpgoKCMHfuXMycOZNXVps7d+5ofk5OTu72U+j6wLov9NG3fPWENl6+fBmjRo3i/Jf/89qfXj106BC+/fZbTjms23rx4kVcvHgRADB16lQ8fPiQc9bIkSNRX1+PJ0+eAAB+/fVXDB06lPc1MTcrK9EqkMcz94Sxqw/V1dU4fvw4gGen6VUqFSwsLHDv3r1uzQLYHKv66gcWY5fXGQV3d3fcuHEDFRUVaGlpQUZGBmbNmtXtWQCgVqsREREBW1tbrFq1inPO84YMGaL5+f3330dpaSmzbKFg3Res81joCW1k/bXD4MGDNT/Pnj2b84cn67b269cPAGBqagp7e/sXrk7XRUNDA4YMGQJDw2d/A40cOZL3dUbZubmwtbbGOEdHnOJxRTsrPWHs6sOJEycwZcoUAICtrS3EYjHnD3aWWQCbY1Uf/cBq7PI6o2BoaIjY2Fj4+flBqVQiMDCQ84VILLMAoKioCEePHoW9vb3mNrBNmzbhnXfe6XJGeno6fH19YWFhgaqqKkRGRsLX1xfjxo2DWq1GRUWFTpOQjz/+GM7OzjAxMcFXX32F9PR0NDQ0YNWqVTA1NcXWrVtx8+ZNREZG6tze5cuXo6CgAPfv34eDgwM2btyIgIAAnXMA9n3BOo8FobexubkZcrkcgYGBnF6fnJwMLy8vmJubo7S0FFKpFF5eXnB2doZarUZlZSXWcbwCmnVbFy1aBCMjI6hUKmRlZaGpqYlz1u3bt/Hrr7/C398fKpUKd+7c4TXxAIAd+/YhPSEBIpEI81aswOxp02BgYMArkw8hjt3g4GDY29vD2NgYcXFxOH78OBobG7FkyRL0798f69atQ2VlZZdv+evsvTc1NRWpqam4cuUKWlpaunxssMzqDN9jtY0+3idZjV0D9Uu+EJTL5ZBIJLwK1RfWV3QPGzaMaR7r1SMPHz7MLEvoq0fevHmT9/fKgLDHL9fT/tpw/dDXpqamhmleT109MjM7Gz+dO4e4qCgAwCc7dsDD1RXztRzfZffuwf7/7rbiQ8hjd+XKlUzzvv76a6Z5rH311VfMshYxXKkUePnqkbqOXQAoe/iw0/feP/3FjIQQwoVarYY0IQGb/vlPzbYNwcHYk5QElUrVjZUR8nKsxy5NFAghpBNXysrgP28eBg8apNlmbmaGpQsX4vLVq91YGSEvx3rs8rpGgRBC/qxcHBzg0sl3xCv9/buhGkK6jvXYpTMKhBBCCNGKJgqEEEII0arHfvXAal2DNr///jvTvPfee0+wednZ2cyyAOHfRcFKUVERs6xly5YxywKAf7a7aEmIPv/8c2ZZmZmZzLIAoInHIlTPU+lpfQ0hSUpKYprH+o6dkpISpnmsj1WWWN9FAS0PO6MzCoQQQgjRiiYKhBBCCNGKJgqEEEII0YomCoQQQgjRivdEIScnBy4uLnB0dOzyc7xfRRbrvJCQENjY2GDSpEmcM7Zs2YIzZ87gm2++0WwLDQ3Ft99+i8OHD0MqlcLY2PiVZz2PRVufx7pvWWBd0wcffIClS5di+fLlnB5zm5KSgrq6uhfWJggNDUVZWRlKS0uxa9euLmUtXrwYO3bswMaNGzXb+vbtizVr1uDTTz/FmjVrYGRkpHONbfjuO5Ztfd6jR48glUqxZs0ahISE4JdffuGU0+Z1GLtCz1MqlVi0aBHCwsJ45dTW1mLr1q2af4KDg5Gj42JJ+hy7LOprj1U/8JooKJVKrF27FpmZmZDJZMjIyOC8Ih3LLH3kLV68GEePHuX8egDIyspCeHh4h21FRUX4xz/+AX9/f1RVVXV5YRGWWc9j0db2WPeFkGuKi4tDSkoKpyvD09LSMH369A7bfH19MWfOHLi6usLJyQm7d+/uUtaFCxdw4MCBDtumTp2K69evY/v27bh+/TqmTZumc40Am33Hsq3PO3jwINzc3LB//37ExcVh+PDhnHKA12PsCj0PeLawk7W1Na8MABg6dCiioqIQFRWFbdu2QSwWw83NTacMfY5dFvW1YdkPvCYKxcXFkEgksLa2hlgsxoIFC3D69Oluz9JHnpeXF+9bMktKSlBfX99hW1FREZT/t1Z4aWkpLC0tX3nW81i0tT3WffFnrSk/P/+FJZGDg4MhlUrR0tICALh7926XssrLy/H48eMO25ydnTW3eBYVFcHZ2ZlTnSz2Hcu2ttfY2Ai5XK6ZBIlEIs5n1gBhjhOhv1eyzqurq0NBQQHef/99zhmduXr1KiwtLWFhYaHT6/Q1dlnV14ZlP/CaKNTU1HSYrVtZWUGhUHR7lj7yXgU/Pz+cP39ecFl8CbEv9FXTxx9/jBUrVuDkyZO8swDAzs4O3t7eKCwsRG5uLtzd3Tln9e/fXzO5rK+vR//+/Tnl6GvfsWhrXV0dTE1NsW/fPqxduxbx8fG8lq1+Hcau0POio6Px0UcfoVcvtpfUXbhwARMnTmSSxfI4bcO3Ppb9QBczCsTSpUvR2tqKf/3rX4LKIl2XkJCAgwcP4osvvsCJEydw6dIl3pmGhoYwMzODp6cn1q9fjyNHjjCoVJhYtFWpVKK8vBzTp09HXFwc+vTpg2PHjumhWvIqnD17FmZmZnDoZN0CPlpbW1FSUgIPDw8meayPU9b18cVrojBs2DBUV1drflcoFLCysur2LH3k6dOsWbPg5eWFyMhIQWWxIsS+0EdNg/5vpbaBAwfC29ubyXfZ1dXVOH78OIBnpxJVKhXnU5ENDQ0wMTEBAJiYmKChoYFTjr76k0VbLSwsYGFhgbFjxwIA3nrrLZSXl3Ou6XUYu0LOKykpQV5eHmbOnImNGzeiuLgYW7Zs4Vxbm8uXL2PUqFEwNTXlnQWwPU5Z1ceyH3hNFNzd3XHjxg1UVFSgpaUFGRkZmDVrVrdn6SNPXzw9PeHv74/169ejublZMFksCbEvWNf05MkTzTUBT548QXFxMZOLr06cOIEpU6YAAGxtbSEWi3Hv3j1OWaWlpZgwYQIAYMKECS9ctd1V+upPFm0dOHAgLCwsNG+Qly9fxogRIzjX9DqMXSHnhYWFITs7G2fOnIFUKoWHhwd27NjBubY2LL92ANgepwCb+lj2A6+1HgwNDREbGws/Pz8olUoEBgZyPkXEMksfecuXL0dBQQHu378PBwcHbNy4EQEBATplREVFwc3NDQMGDMDJkyeRnJyMgIAAiMVi7Nu3D8CzN/MvvvjilWbpo63tse4LFljX9ODBA3z66acAnp3+njp1qs4Henp6Onx9fWFhYYGqqipERkYiNTUVqampuHLlClpaWrp8J0tgYCBsbGxgbGyMqKgonDlzBv/+97+xbNkyeHp64sGDB/jqq690bifAZt+xbOvzVqxYgT179qC1tRVDhgzhdUvd6zB2hZ7HWnNzM+RyOefxpc+xy6K+Niz7wUCtVqu1/Uu5XA6JRMK50J6E9V/grBeFYknoi0LdvHkT9vb2vHNYj1+Wi0L5+PgwywLYLwrFZYL5Mnye2fA81otCvfvuu8yyysvL4ejoyDvndXrv5fuci+cJeVEorpNzbVgvCqXtvZcuZiSEEEKIVjRRIIQQQohWNFEghBBCiFY0USCEEEKIVjRRIIQQQohWNFEghBBCiFa8nqPwZ8L6Fj/WtyCyvP0tJiaGWRYAbN68mWmeULU91ZAFlotuAUB8fDzTPJa3grLG+tZS0r3GcVy8TnvgOLZ5DP3vf//r7hI4oTMKhBBCCNGKJgqEEEII0YomCoQQQgjRiiYKhBBCCNGK90QhJycHLi4ucHR0RHR0tGCyhJ4XEhICGxsbTJo0idPrg4KCkJCQgJ07d2q29evXDxs2bMAXX3yBDRs2oG/fvpzrmzRpEkJDQxESEoL58+fD0JDfda+s+4IF1jUplUosWrSI8yJE8fHxuHbtGs6dO6fZ9sknn6C0tBR5eXnIy8vD1KlTu5SVkpKCurq6F1aIDA0NRVlZGUpLS7Fr164u17ZlyxacOXMG33zzjWbbypUrcfjwYRw6dAh79+7VaVld1vW1x/fYet7rMHaFmHdJLsffP/zwhe0frF6NixxXPm3D51jV59j19PRESEgIQkNDmYxfVv3Ka6KgVCqxdu1aZGZmQiaTISMjA2VlZd2e1RPyFi9ejKNHj3J+fX5+/gsdP3v2bFy9ehUbNmzA1atXMXv2bE7Z/fv3h6enJxITE/Hll1+iV69ecHJy4lwr633Hgj5qSk9P57W0dHp6OhYsWPDC9sTERPj4+MDHxwc//PBDl7LS0tIwffr0Dtt8fX0xZ84cuLq6wsnJCbt37+5ybVlZWQgPD++w7fDhw/D390dAQADOnTuHDzt5U39V9bXH99hq73UYu0LNc3V0RG+xGEUymWbbJbkcSqUSbs7OnOsD+B2r+hq7lpaWePPNN5GUlIT9+/fDzs4OZmZmnGoE2PYrr4lCcXExJBIJrK2tIRaLsWDBApw+fbrbs3pCnpeXF69b5K5du4bGxsYO29zc3JCfnw/g2UTizTff5Jzfq1cviEQizf82NDRwzmK971hgXVNdXR0KCgrw/vvvc844f/48Hjx4wPn17eXn5+O3337rsC04OBhSqRQtLS0AgLt373Y5r6SkBPX19R22PX78WPNznz59urW+9vgeW+29DmNXyHnbIiIQ2e527siYGESuW8e5NoD/saqvsTto0CBUV1fj6dOnUKlUqKio4LU8N8t+4DVRqKmpwfDhwzW/W1lZQaFQdHtWT8jTBxMTEzx8+BAA8PDhQ873/Tc0NODcuXNYt24d1q9fj6amJpSXl3OuS4j7jnVN0dHR+Oijj9CrF/vLfoKCgpCfn4/4+HiYmppyzrGzs4O3tzcKCwuRm5sLd3d33rWtXr0amZmZeO+995CUlMQrSx/18fU6jF0h59nb2sLS3BxnCwtRJJOhr5ERnHkuQa+PY5XF2K2rq8OoUaNgZGQEkUgEOzs7Xs9uYdkPdDEjeUGfPn3wl7/8BbGxsYiOjoZYLIaLi0t3lyVYZ8+ehZmZGa/Zvzapqalwc3PD5MmTcfv2bWzfvp1zlqGhIczMzODp6Yn169fjyJEjvOtLTEzEnDlzkJ2djfnz5/PK0kd9pOfbGh6OqNhYbNuzB5HPff2lK30dqyzG7r1791BQUIDAwEAsWbIEtbW1UKvVTOvkitdEYdiwYaiurtb8rlAoYGVl1e1ZPSFPH+rr6zV/cZqamr5wqrirJBIJHjx4gMePH0OlUuHq1asYOXIk57qEuO9Y1lRSUoK8vDzMnDkTGzduRHFxMbZs2cKkzrt370KlUkGtVuPQoUNwc3PjnFVdXY3jx48DeHZaUqVS6XQB4stkZ2djypQpvDL0WR9Xf/ax2xPyJKNHY/SIETAfMABjbWw45wD6O1ZZjd2LFy8iMTERqampaGpqwr179zjXxLIfeE0U3N3dcePGDVRUVKClpQUZGRmYNWtWt2f1hDx9kMlk8Pb2BgB4e3vj4sWLnHIePnyIESNGQCQSAQDGjBnD+ftiQJj7jmVNYWFhyM7OxpkzZyCVSuHh4YEdO3YwqXPw4MGan2fPns3rIrMTJ05oPsxtbW0hFot5vRGNGDFC8/PkyZNx69Ytzln6qI+FP/vY7Ql5AHCzshKVNTW8MgD9Hausxm6/fv0APPtDz97e/oU7K3TBsh943fNmaGiI2NhY+Pn5QalUIjAwkPMpHZZZPSFv+fLlKCgowP379+Hg4ICNGzciICCgy68PDg6Gvb09jI2NERcXh+PHj+P06dMICQnB5MmTcf/+fSQkJHCqrbq6GnK5HKtXr4ZKpUJtbS1+/vlnTlkA+33HghBrSk5OhpeXF8zNzVFaWgqpVAovLy84OztDrVajsrIS67p4IVd6ejp8fX1hYWGBqqoqREZGIjU1Fampqbhy5QpaWloQGBjY5dqioqLg5uaGAQMG4OTJk0hOTsZbb72FkSNHQq1W4/bt2zrdEsa6vvb4HlvtCXGcCP29jXVedm4ubK2t0bt3b5zKyYHfu+9yzmJBn2N30aJFMDIygkqlQlZWFpqamjjXybIfDNQv+RJELpdDIpFwLvR11tzczDSP5aJQo0ePZpYFsF8U6ubNm7DnecESwH78/vLLL8yy/vrXvzLLAsDsbok2EydOZJp34cIFZlm///47syyA7YJw5eXlcHR05J3zOr339nnuDoLnTZ47F+kJCRCJRJi3YgXyv/sOBgYGWv//JXfuMK1v/PjxzLI+++wzZlnAq3vvpYsZCSGECFJmdjbcnJwwfNgwDB40CF4eHjiWldXdZb12aKJACCFEcNRqNaQJCdjU7mzqhuBg7ElKgkql6sbKXj80USCEECI4V8rK4D9vHgYPGqTZZm5mhqULF+Ly1avdWNnrh98D/AkhhBA9cHFwgEsnF9+t9Pfvhmpeb3RGgRBCCCFa9dgzCu1XTWRh7ty5TPO4PuxIG5bPl/d/TWbkvZTKP7yiWhd/+ctfmGXVMLgnvD2W7QQAMx6LgHWG5V07LO9SILorKipimsfnMcWdYX1nAUusP2deFTqjQAghhBCtaKJACCGEEK1ookAIIYQQrWiiQAghhBCtaKJACCGEEK14TxRycnLg4uICR0dHREdHCyYLACZNmoTQ0FCEhIRg/vz5MDTkd5OHUqnEokWLEBYWxrs2APjggw+wdOlSLF++HCtXrtTptfHx8bh27RrOnTv3wr8LCQnBb7/9BjMzM861+fj4YOPGjdi0aRN8fX0557Rh3bd8XJLL8fcPP3xh+werV+Mij9XahHgssGprZ+Ptk08+QWlpKfLy8pCXl4epU6d2OW/x4sXYsWMHNm7cqNnWt29frFmzBp9++inWrFkDIyOjLue1x3qsCWnsthF6G/m8t3WGz3tvWFgYvv766w6L5C1btgwHDhzAvn37sHnzZs2qjV2RkpKCurq6F1Z2DA0NRVlZGUpLS3VaIO15LD9nWPUrr4mCUqnE2rVrkZmZCZlMhoyMDM7L4LLMAoD+/fvD09MTiYmJ+PLLL9GrVy848bzlKz09HdbW1rwynhcXF4eUlBQkJSXpXMuCBQte2G5lZYUpU6agqqqKc01Dhw7FpEmTEBMTg127dsHR0ZHT2uptWPctX66OjugtFqNIJtNsuySXQ6lUws3ZmVOmUI8FVm3VNt4SExPh4+MDHx8f/PDDD13Ou3DhAg4cONBh29SpU3H9+nVs374d169fx7Rp07qc14b1WBPa2NVHTfpqI9f3ts7wee/98ccfsW3btg7bSkpKEBISgrCwMCgUCsyfP7/LeWlpaZg+fXqHbb6+vpgzZw5cXV3h5OSE3bt3c6oVYPc5w7JfeU0UiouLIZFIYG1tDbFYjAULFnC+359lVptevXpBJBJp/rehoYFzVl1dHQoKCvD+++/zqomV8+fPd7pi4I4dOxAZGYmXLAr6hwYPHoxbt27h6dOnUKlUuHHjBlxdXTnn6aNv+doWEYHImBjN75ExMYjs4hLOnRHyscCirdrGG1fl5eV4/Phxh23Ozs6ae/SLiorgzGHSxnrfCXHsvg5tbI/ve69cLn/hvV8mk2nWi7h27ZpOfwjl5+fjt+eeWxIcHAypVIqWlhYAwN27dznVyvJzhmW/8poo1NTUYPjw4ZrfraysoFAouj0LABoaGnDu3DmsW7cO69evR1NTE8rLyznnRUdH46OPPkKvXmwv6/j444+xYsUKnDx5knfWjBkzUFtbC7lcziuntrYWEokEffv2hUgkgoODAwYMGMA5j3XfsmBvawtLc3OcLSxEkUyGvkZGcOaxtLWQjwXWbW0vKCgI+fn5iI+Ph6mpKa+s/v37ax5UVl9fj/79++ucwXrfCXHs9pQ2snpv09d7b5tp06bhv//9L68MOzs7eHt7o7CwELm5uXB3d+eUw7KtLPu1xz6Z8Y/06dMHf/nLXxAbG4umpiZ88MEHcHFxweXLl3XOOnv2LMzMzODg4ICff/6ZWY0JCQkYNGgQHjx4gIiICIwaNYrzX+5GRkZYt24dkyd/1dXV4YcffkBISAiam5uhUCh4naEQqq3h4Vj1yScQi8WIjYzs7nL0Sh9tTU1NRXR0NNRqNTZv3ozt27czfQIj6blYvbfp6723zcKFC6FUKpGbm8srx9DQEGZmZvD09ISHhweOHDmCMWPG6JSh77bywWuiMGzYMFRXV2t+VygUsLKy6vYsAJBIJHjw4IHm9ObVq1cxcuRIThOFkpIS5OXloaCgAC0tLWhsbMSWLVuwY8cOzvUBwKD/WxVt4MCB8Pb2RllZGeeJwujRozFy5Ejk5+cDeLY/c3NzMXXqVNy5c0fnvMLCQhQWFgIAZs+ejd9//51TXW21sOxbViSjR2P0iBFobm7GWBsbXllCPhYAtm1t0/706qFDh/Dtt9/yymtoaICJiQnq6+thYmLC6atC1vtOiGO3J7SR1Xubvt57AeCdd96Bh4cHPv30U95Z1dXVOH78OIBnp/xVKhUsLCxw7969LmewbivLfuV1fsPd3R03btxARUUFWlpakJGRgVmzZnV7FgA8fPgQI0aMgEgkAgCMGTOG8/dGYWFhyM7OxpkzZyCVSuHh4cF7oD558kQziXny5AmKi4t5XcBSVlaGsWPHYty4cRg3bhxqamrg6+vLaZIAAMbGxgCeHeiurq68Ts2x7luWblZWopLBugtCPhbasGprm8GDB2t+nj17Nu8L4EpLSzFhwgQAwIQJE164qrwrWO87IY5dobeR5XubPt57AcDNzQ1z587F559/jubmZt55J06cwJQpUwAAtra2EIvFOk0SAPZtZdmvvM4oGBoaIjY2Fn5+flAqlQgMDIRDJ8uCvuos4NkMTy6XY/Xq1VCpVKitrRXU6ZwHDx5oZrJKpRJTp07FxIkTu/z65ORkeHl5wdzcHKWlpZBKpTh8+DCz+pYvX45+/fpBqVQiIyMDT5484ZzFum9Zyc7Nha21NXr37o1TOTnwe/ddzllCPhYA/m3tbLx5eXnB2dkZarUalZWVWKfDBZKBgYGwsbGBsbExoqKicObMGfz73//GsmXL4OnpiQcPHuCrr77StZnM950Qx67Q28j3vY21jz/+GM7OzjAxMcFXX32F9PR0zJ8/HyKRCJ9//jmAZxc07t+/v0t56enp8PX1hYWFBaqqqhAZGYnU1FSkpqbiypUraGlpQWBgoD6b1CUs+9VA/ZIvn+VyOSQSCedC9el1Wz3y73//O7Ms1qtHfvHFF0zzbt68CXsGF9uVXb4M+5dczTx57lykJyRAJBJh3ooVyP/uOxgYGGj9/zfxeC6Fvv3R6pG6tpX16pEsxxzr8cZSeXk5HB0deecI+b33dVs9kuUdILJ2tymzwHJFW0D7ey89mZG8ljKzs+Hm5IThw4Zh8KBB8PLwwLGsrO4uSy9ep7YSQtijiQJ57ajVakgTErCp3RX6G4KDsScpSXNv9Z/F69RWQoh+0ESBvHaulJXBf948DP6/K7MBwNzMDEsXLsTlq1e7sTL2Xqe2EkL040/7HAVCtHFxcIBLJxf1rGR87YYQvE5tJYToB51RIIQQQohWPfaMAp9HCndm3rx5TPNYe12uGmdJ9cYbgr5TgaXal9zBwAXLdR0A4MNOVrAkPZMui391RdTq1UzzWK9TwfJpo6zvUnhV6IwCIYQQQrSiiQIhhBBCtKKJAiGEEEK0ookCIYQQQrTiPVHIycmBi4sLHB0dER0dLZisO3fuICYmRvPP5s2bcfbsWZ0ypFIpioqK8P3332u2hYeHIysrC6dOnUJaWhosLS27La89Hx8fbNy4EZs2bYKvry+njPZY9oU+8lgQchtZZikUCsyfPx8+Pj7w9fXFwYMHdc5ISUlBXV3dCws1hYaGoqysDKWlpdi1axfnGpVKJRYtWoSwsDDOGW2E3K+sCL2Nnp6eCAkJQWhoKCZNmsQp45Jcjr93chHsB6tX46IOC4axHruLFy/Gjh07sHHjRs22vn37Ys2aNfj000+xZs0aGBkZdTmvPaH2K6+JglKpxNq1a5GZmQmZTIaMjAzOK8ixzAIAS0tLREREICIiAuHh4RCLxXDS8fn1x44dw7JlyzpsS05OxqxZs+Dn54effvpJpytiWee1GTp0KCZNmoSYmBjs2rULjo6OsHjJGgd/hHVfsM5jQchtZF2boaEhtm7diry8PJw+fRppaWm4fv26ThlpaWmYPn16h22+vr6YM2cOXF1d4eTkhN27d3OuMT09ndfqqW2E3K+sCL2NlpaWePPNN5GUlIT9+/fDzs4OZhzuPnJ1dERvsRhF7dZHuCSXQ6lUws3Zucs5rMfuhQsXcODAgQ7bpk6diuvXr2P79u24fv06pk2b1uW8NkLuV14TheLiYkgkElhbW0MsFmPBggWcb01hmfW8X3/9Febm5joP1uLiYvz+++8dtj169Ejzs5GREV6yppbe89oMHjwYt27dwtOnT6FSqXDjxg1Oa7+3r5NlX+izb4VSk5CPhcGDB8PFxQXAs+XDbWxsUFtbq1NGfn4+fntu4ang4GBIpVK0tLQAAOdl3Ovq6lBQUID333+f0+vbE3K/siL0Ng4aNAjV1dWa96OKigrOqxZui4hAZEyM5vfImBhE6rBKKcB+7JaXl2uW0W7j7OysWSyrqKgIzjpMZNoIuV95TRRqamowfPhwze9WVlZQKBTdnvU8mUyG8ePHM8kCgIiICBQUFGDOnDmIi4vr9rza2lpIJBL07dsXIpEIDg4OvJ4zwbov9Nm3XAm5jfrcX1VVVSgtLYWbmxvvLDs7O3h7e6OwsBC5ublwd3fnlBMdHY2PPvoIvXrxv2RKyP3KitDbWFdXh1GjRsHIyAgikQh2dnacV4i0t7WFpbk5zhYWokgmQ18jIzgzWFmW1dht079/f82KwfX19ejfv7/OGULu1z/9xYytra2Qy+W8/sJ+XkxMDN5++21kZmZiyZIl3Z5XV1eHH374ASEhIQgODoZCoeB0ZoL8uTU2NiIoKAhRUVGc3sieZ2hoCDMzM3h6emL9+vU4cuSIzhlnz56FmZkZ5784ifDcu3cPBQUFCAwMxJIlS1BbW8vr/WhreDiiYmOxbc8eRIaHM6mRxdh9nfCaKAwbNgzV1dWa3xUKBaysrLo9q71ffvkFw4cPZ/LG+LzMzMwXvvvqrrzCwkJER0dj3759ePz4Me7cucO5DtZ9oa++5UPIbdTH/nr69CmCgoIwd+5czJw5k1dWm+rqahw/fhzAs9OcKpVK52tjSkpKkJeXh5kzZ2Ljxo0oLi7Gli1bONck5H5lpSe08eLFi0hMTERqaiqamppw7949zlmS0aMxesQImA8YgLE2NrzqasNi7LbX0NCgOWtiYmKChoYGnTOE3K+8Jgru7u64ceMGKioq0NLSgoyMDMyaNavbs9pj/bXD6NGjNT9PmzYN5eXlgsgzNjYGAAwcOBCurq7473//y7km1n2hr77lQ8htZF2bWq1GREQEbG1tsWrVKs45zztx4gSmTJkCALC1tYVYLNb5AyEsLAzZ2dk4c+YMpFIpPDw8sGPHDs41CblfWekJbezXrx8AwNTUFPb29i/ccaCrm5WVqKyp4ZXRHoux215paSkmTJgAAJgwYQKn9gq5X3mt9WBoaIjY2Fj4+flBqVQiMDCQ8ylEllltmpubcf36dcyfP5/T6+Pi4jBx4kQMHDgQBQUF2Lt3L3x9fTFmzBioVCooFAp89tln3ZbX3vLly9GvXz8olUpkZGTgyZMnnHIA9n2hj77lS8htZF1bUVERjh49Cnt7e0ydOhUAsGnTJrzzzjtdzkhPT4evry8sLCxQVVWFyMhIpKamIjU1FVeuXEFLSwsCAwM518iKkPuVlZ7QxkWLFsHIyAgqlQpZWVloamrinJWdmwtba2v07t0bp3Jy4Pfuuzq9nvXYDQwMhI2NDYyNjREVFYUzZ87g3//+N5YtWwZPT088ePAAX331la7NFHS/Gqhf8uWRXC6HRCLhXKg+7d+/n2nel19+yTSPNZZ/xQh9UaibN2/CnsEFS0Iev6yxXsRp2LBhTPNk7W5x40vIC+uUl5fD0dGRd46Qx+7OnTuZ5v3RolCT585FekICRCIR5q1YgfzvvoPBSxZBM2D81RDLRaF66nvvn/5iRkIIIT1TZnY23JycMHzYMAweNAheHh44lpXV3WW9dmiiQAghRHDUajWkCQnY1O4v+g3BwdiTlASVStWNlb1+aKJACCFEcK6UlcF/3jwMHjRIs83czAxLFy7E5atXu7Gy1w+vixkJIYQQfXBxcIBLJxffrfT374ZqXm90RoEQQgghWtFEgRBCCCFavfT2yJKSEvTu3ftV1kMImpubMW7cON45NH7Jq0Zjl/Rk2sbvSycKhBBCCHm90VcPhBBCCNGKJgqEEEII0YomCoQQQgjRiiYKhBBCCNGKJgqEEEII0YomCoQQQgjRiiYKhBBCCNGKJgqEEEII0eqli0KVlJRAJBK9qlq61f/+9z+meU+fPmWaN3bsWKZ5Qvb06VNmT7cT6vj97bffmOYplUqmeazra2xsZJZlaMh2LTtnZ2dmWU+fPsX48eN55wh57N6+fZtp3v3795nmWVpaMs2zsLBglmVgYMAsCwB6MT7um1WqTt97X3rEiUQiSCQSpoUI1caNG5nm3b17l2lebm4u0zwhu3nzJpMcIY/f4uJipnmsP9iPHDnCNO/ChQvMsgYOHMgsC2A33gCgqqqKSY6Qx+7/+3//j2neN998wzQvJCSEad7y5cuZZbF+LHcfxsd92cOHnW6nrx4IIYQQohVNFAghhBCiFU0UCCGEEKIVTRQIIYQQohXviUJOTg5cXFzg6OiI6OhowWSxyAsLC8PXX3+NhIQEzbZly5bhwIED2LdvHzZv3ox+/fp1OW/Lli04c+ZMh4t3Vq5cicOHD+PQoUPYu3cv5ytshbbv9J3HglDbWFtbi61bt2r+CQ4ORk5ODq/a3NzcEBAQgICAAMycORNvvPGGTq9nPXZTUlJQV1eHK1eudNgeGhqKsrIylJaWYteuXV3Kio+Px7Vr13Du3DnNtk8++QSlpaXIy8tDXl4epk6d2uXa2gsJCYGNjQ0mTZrE6fX6ItSx28bT0xMhISEIDQ3ltO+kUimKiorw/fffv/Dvli9fjvLycs4XtfI9FtpjPT5Y9cMluRx///DDF7Z/sHo1Lj53zHUFr4mCUqnE2rVrkZmZCZlMhoyMDJSVlXV7Fqu8H3/8Edu2beuwraSkBCEhIQgLC4NCocD8+fO7nJeVlYXw8PAO2w4fPgx/f38EBATg3Llz+LCTzv0jQtx3+sxjQchtHDp0KKKiohAVFYVt27ZBLBbDzc2Nc23GxsYYP3480tPTcejQIRgYGOh8uy3rsZuWlobp06d32Obr64s5c+bA1dUVTk5O2L17d5ey0tPTsWDBghe2JyYmwsfHBz4+Pvjhhx+6XFt7ixcvxtGjRzm9Vl+EPHaBZ7cnvvnmm0hKSsL+/fthZ2cHMzMznTKOHTuGZcuWvbB96NChePvtt6FQKDjVxuJYaI/l+GDZD66OjugtFqNIJtNsuySXQ6lUwo3D7cC8JgrFxcWQSCSwtraGWCzGggULcPr06W7PYpUnl8vR0NDQYZtMJoNKpQIAXLt2Tae/okpKSlBfX99h2+PHjzU/9+nTR6f62ghx3+kzj4We0sarV6/C0tKS973cvXr1gqGhIQwMDCASiXR+rgHrsZufn//CLZ3BwcGQSqVoaWkB0PVbjM+fP48HDx7o9N/vKi8vL+a3Y/Il9LE7aNAgVFdX4+nTp1CpVKioqICDg4PONf3+++8vbN+yZQt27doFtVrNuT6+x0J7LMcH637YFhGByJgYze+RMTGIXLeOUxaviUJNTQ2GDx+u+d3KyorzTI9llj7yOjNt2jT897//5Z2zevVqZGZm4r333kNSUpLOrxf6vnsVfaGrntLGCxcuYOLEibwyHj16hJ9//hlBQUFYtWoVmpubcevWLd61AfzHbnt2dnbw9vZGYWEhcnNz4e7uzisvKCgI+fn5iI+Ph6mpKa8sIRH62K2rq8OoUaNgZGQEkUgEOzs7mJiYcM5rM3XqVNTV1eGXX37hnKHPY4Ev1v1gb2sLS3NznC0sRJFMhr5GRnC2t+eURRczcrRw4UIolUomD0JKTEzEnDlzkJ2drdNXGeTPrbW1FSUlJfDw8OCV07t3b0gkEqSkpCApKQkikQj2HN8wnsdy7BoaGsLMzAyenp5Yv349r4c+paamws3NDZMnT8bt27exfft2XrWRrrt37x4KCgoQGBiIJUuWoLa2ltcZAODZGavg4GDExsbyytHnsSBEW8PDERUbi2179iDyua8OdcFrojBs2DBUV1drflcoFLCysur2LH3ktffOO+/Aw8MDMe1O67CQnZ2NKVOm6Pw6oe87ffYFVz2hjZcvX8aoUaN4/zU8cuRI1NfX48mTJ1CpVPj1118xdOhQXpnP4zp226uursbx48cBPDsNq1KpOH/lcvfuXahUKqjVahw6dIjXNR5C0xPG7sWLF5GYmIjU1FQ0NTXh3r17vPJGjhyJESNGICsrC3l5eRgyZAhOnjyp8/h4FccCV/roB8no0Rg9YgTMBwzAWBsbzjm8Jgru7u64ceMGKioq0NLSgoyMDMyaNavbs/SR18bNzQ1z587F559/jubmZt55I0aM0Pw8efJkTqfBhL7v9NUXfPSENrL42gEAGhoaMGTIEM0aCSNHjmTyyGcWY7e9EydOaCYbtra2EIvFnD9gBg8erPl59uzZ3X7xLEs9Yey23Q1mamoKe3v7F+5u0dX169cxYcIEzcWpt2/fxt/+9jedx4e+jgUW9PU+ebOyEpU1NbwyeK2uYmhoiNjYWPj5+UGpVCIwMFDni1b0kcUq7+OPP4azszNMTEzw1VdfIT09HfPnz4dIJMLnn38O4NkFjfv37+9SXlRUFNzc3DBgwACcPHkSycnJeOuttzBy5Eio1Wrcvn27y7eEsW5rT8pjQehtbG5uhlwuR2BgIOeMNrdv38avv/4Kf39/qFQq3LlzR+c3btZjNz09Hb6+vrCwsEBVVRUiIyORmpqK1NRUXLlyBS0tLV1ue3JyMry8vGBubo7S0lJIpVJ4eXnB2dkZarUalZWVWMfxIq7ly5ejoKAA9+/fh4ODAzZu3IiAgABOWawIfewCwKJFi2BkZASVSoWsrCw0NTXp9Pq4uDhMnDgRAwcOREFBAfbu3YuMjAxeNQFsjoX2WI4PffRDdm4ubK2t0bt3b5zKyYHfu+9yyjFQv+TLI7lcLtiFSVjr7PYqPmhRKO5u3rzJ5HtDIY/fb7/9lmkeLQrFHetFoZycnHjnCHns7ty5k2keLQrF3R8tCjV57lykJyRAJBJh3ooVyP/uu5euYFn28GGn7710MSMhhBDyJ5OZnQ03JycMHzYMgwcNgpeHB45lZXHKookCIYQQ8ieiVqshTUjApn/+U7NtQ3Aw9iQlaZ4DpAuaKBBCCCF/IlfKyuA/bx4GDxqk2WZuZoalCxfi8tWrOufxupiREEIIIcLi4uAAl04uhFzp788pj84oEEIIIUSrHntGoaioiGke67UHWD+MiZCX0XXRnT+SmJjING+cpSWzLL9Vq5hlAWyvRH/ZFeV/FrJ2Cw0J0Zdffsk076effmKWxeIWz/aaGB/3ePiw0810RoEQQgghWtFEgRBCCCFa0USBEEIIIVrRRIEQQgghWtFEgRBCCCFa8Z4o5OTkwMXFBY6OjoiOjhZMFgB88MEHWLp0KZYvX46VK1fq/PqUlBTU1dW9sGhIaGgoysrKUFpaymkRJ+DZKpQBAQEICAjAzJkz8cYbb3DKacN63wk9jwWhtrG2thZbt27V/BMcHIycnBzB5LVRKpVYtGgRwsLCOL3+klyOv3/44QvbP1i9Ghd1WKgnLCwMX3/9NRISEjTbli1bhgMHDmDfvn3YvHmzZjVDLmjs/jHWfSCVSlFUVITvv//+hX+3fPlylJeXd3nND5ZZgH7Hm9D6tQ2viYJSqcTatWuRmZkJmUyGjIwMzsu5ssxqLy4uDikpKUhKStL5tWlpaZg+fXqHbb6+vpgzZw5cXV3h5OSE3bt365xrbGyM8ePHIz09HYcOHYKBgQHGjh2rc04b1vtO6HksCLmNQ4cORVRUFKKiorBt2zaIxWK4ublxro11Xpv09HRYW1tzfr2royN6i8Uoane73SW5HEqlEm7Ozl3O+fHHH7Ft27YO20pKShASEoKwsDAoFArMnz+fU400druGdR8cO3YMy5Yte2H70KFD8fbbb0OhUHRLFqC/8SbEfm3Da6JQXFwMiUQCa2triMViLFiwgPPzCFhmsZKfn//CqnzBwcGQSqVoaWkBwH2VyF69esHQ0BAGBgYQiURobGzkXCfrfSf0PBZ6ShuvXr0KS0tLWFhY8M5imVdXV4eCggK8//77vHK2RUQgst0zRyJjYhCp45LQcrkcDQ0NHbbJZDLNM+2vXbvGub00druGdR8UFxfj999/f2H7li1bsGvXLrxk0WO9ZgH6G29C7Nc2vCYKNTU1GD58uOZ3KysrnWdn+shq7+OPP8aKFStw8uRJ3lkAYGdnB29vbxQWFiI3Nxfu7u46Zzx69Ag///wzgoKCsGrVKjQ3N+PWrVuca2K974Sex0JPaeOFCxcwceJE3jms86Kjo/HRRx+hVy9+317a29rC0twcZwsLUSSToa+REZwZLDHe3rRp0/Df//6X02tp7LLBpw/aTJ06FXV1dfjll19418My63lc2yrkfu2xT2bsioSEBAwaNAgPHjxAREQERo0aBVdXV16ZhoaGMDMzg6enJzw8PHDkyBGMGTNGp4zevXtDIpEgJSUFzc3NmP3/27v3qKiq/3/8T4QZpBAVEBQUJS6GCMoEShIX00pR4h2IWR+EVLygRl5SKf2KCy8f8oYKb+ODgixSaomhYNiC7B0XTQULRNBQCURAUNTeIgEjM/P7w5gfCGPMOXucMV6PtVoLTsyT12Hvc2Z7Zp+zZ86EnZ2d2i9pEs3S3t6O4uJizpfNVZWXl5cHQ0NDjBkzBhcvXuRd18aVK7F43ToIhUJER0Twzuts9uzZkEgkyMnJYZpLeo9FG/Tv3x+hoaEIDg7mXQ/LrKf9U/sbr38OmJmZoaamRv59bW0tzM3N1Z7VYchfK2cNHjwY7u7uTN6Ia2pqkJaWBuDJpR2pVKr0ZSYLCws8fPgQLS0tkEqluH79OoYNG8a5JtZ/O03PY+FF2MeSkhKMHDkSAwcO5JXDOq+4uBi5ubnw9vZGeHg4CgsLsX79es55VqNGYdSIETAaNAijra151dbZlClT4OLiwutx6tR3+WHRBsCTc+aIESOQmZmJ3NxcDB06FBkZGZwu8bPM6ozvvmpyu/IaKDg7O+PGjRuoqqqCWCxGamoqZsyYofYsAGhpacGff/4p/7qwsJDXxKsOJ06cwOTJkwEANjY2EAqFaGxsVCqjqakJQ4cOhY7Okws6FhYW3eZCKIP1307T81h4EfZRUz92CAsLQ1ZWFk6dOoWoqCi4uLhg69atvDIrq6tRXVfHu7YOIpEIfn5+2Lx5M9ra2jjnUN/ljlUbAMC1a9cwYcIEeHp6wtPTE/X19Xj33XeVPveyzurAYl81uV15ffSgo6OD6Oho+Pj4QCKRIDg4GGN6WNryeWcBwIMHD7BhwwYAT2Z/Tp06VemTZEpKCry8vGBsbIxbt24hIiICiYmJSExMxOXLlyEWizldvqqvr8f169cRGBgIqVSKO3fudLsFUxms/3aanseCpu9jW1sbysrKmF0eZZ3HUlZODmwsLaGrq4uT2dnwefttpV7/6aefwsHBAQYGBjh06BBSUlIwa9YsCAQCbN68GcCTCWb79+9Xujbqu73Dug327NmDiRMnYvDgwThz5gz27t3LeUElllmA6vqbJrZrBy3ZM6Z8lpWVwcrKinOhqsR69UhPT0+meaxXj1y6dCnTPE1WWVkJOwYT2jS5/37zzTfqLuGZxo8fzzbvGatHevj5ISU2FgKBAP4LFyL/+PFnrsLIevVIliv6VVRUwN7enneOJvfdgIAApnlXrlxhmscay4Eh69UjWVN07qUnMxJC1CY9KwuisWMx3MwMpkOGwM3FBd9mZqq7LEJIJzRQIISohUwmQ1RsLD77+GP5trWhodgdHy+/J50Qon40UCCEqMXlq1cR6O8P07/uTgIAI0NDfDR7Nko0/HI0IX3JP/o5CoQQzeU4Zgwce/j8d1FgoBqqIYQo8sIOFNauXavuEp5p1Zw5TPNamaYRdZvDuH+wxuUOgWdZcvQos6ysrCxmWUR5Tk5OTPNY3Lbe2fbt25nmmZmZMcti/STIV199lWmeIvTRAyGEEEIUooECIYQQQhSigQIhhBBCFKKBAiGEEEIUooECIYQQQhTiPVDIzs6Go6Mj7O3tsWPHDrVmrV+/HqdOncKRI0fk2xYtWoTDhw8jOTkZe/fuVWqFsISEBDQ0NHRbh2H58uW4evUqSktL8cUXXyhV46WyMvxr/vxu299fsgS/8ljvgWU7vAh5LGjyPmpybcCTRXCCgoIQFBQEb29vaGtrK/V61sdqZ8uWLYO1tTVef/11Tq9/GvVd5bm6umLZsmVYvnw5p3b48MMPsXXrVoSHh8u3vfTSS1i6dCk2bNiApUuXQk9Pj1NtfPc1JiYG5eXlOHv2rHzbunXrUFpaitzcXOTm5mLq1KmcagOerE00Z84chIWFcc7owKpdeQ0UJBIJVqxYgfT0dBQVFSE1NZXzUs4ssjIzM7Fy5cou2w4fPozAwEAEBQXh7NmzmN/Dm7QiSUlJmDZtWpdtXl5e8PX1xbhx4zB27Fjs3LlTqRrH2dtDVyhEQVGRfNulsjJIJBKIHByUyurAsh1ehDwWNHkfNbk2ANDX14eTkxNSUlKQnJwMLS0tjB49WqkM1sdqZx9++CGOHTvG6bVPo76rPBMTE7z22muIj4/H/v37YWtrC0NDQ6UyLly4gC+//LLLtqlTp+LatWvYsmULrl27hrfeekvp2ljsa0pKSo/rXcTFxclXpDx9+rTStXXOZ3HLKMt25TVQKCwshJWVFSwtLSEUChEQEIDvvvtObVnFxcV4+PBhl20dS00DQP/+/ZXKy8/P77b8c2hoKKKioiAWiwEAd+/eVSoTADatXo2ITotGRezahYhVq5TO6cCyHV6EPBY0eR81ubYO/fr1g46ODrS0tCAQCNDc3KzU61kfq525ublh8ODBnF/fGfVd5Q0ZMgQ1NTV4/PgxpFIpqqqqlF5YqaKiokt/AAAHBwf5YoAFBQVw4PAPKxb7eu7cOTx48EDp390bDQ0NOHPmDN577z3eWSzblddAoa6uDsOHD5d/b25ujtraWrVnPW3JkiVIT0/HO++8g/j4eF5Ztra2cHd3x/nz55GTkwNnZ2elM+xsbGBiZIS88+dRUFSEl/T04MBjtUTWfztNz2NBk/dRk2sDgEePHuHixYsICQnB4sWL0dbWhps3b3LO64zlscoC9V3lNTQ0YOTIkdDT04NAIICtrS0MDAw453UYMGCAfHD58OFDDBgwQOkMVbZnSEgI8vPzERMTg4EDB3LK2LFjBz755BP068d/+iDLfe0Tkxnj4uLg6+uLrKwszJo1i1eWjo4ODA0N4erqijVr1uAoxyfObVy5EpHR0di0ezcinroES4gm09XVhZWVFRISEhAfHw+BQMBkWXCA7bFK1KOxsRFnzpxBcHAw5s6di9u3b0Mmk6m7LJVKTEyESCSCh4cH6uvrsWXLFqUz8vLyYGhoyHRZa1Z4DRTMzMxQU1Mj/762thbm5uZqz1IkKysLkydP5pVRU1ODtLQ0AE8u7UilUk6TrqxGjcKoESNgNGgQRltb86qJ9d9O0/NY0OR91OTaAMDCwgIPHz5ES0sLpFIprl+/jmHDhnHO6wmLY5UF6rvc/Prrr4iLi0NiYiJaW1vR2NjIKw8Ampqa5FcmDAwM0NTUpHSGqtrz7t27kEqlkMlkSE5OhkgkUjqjuLgYubm58Pb2Rnh4OAoLC7F+/XrONbHcV14DBWdnZ9y4cQNVVVUQi8VITU3FjBkz1J7V2YgRI+Rfe3h48L5EeuLECfkJzMbGBkKhkPNBUFldjeq6Ol71AOz/dpqex4Im76Mm1wY8OWEPHToUOjpPloqxsLDoNpeHC9bHKgvUd7l5+eWXAQADBw6EnZ1dtzvHuCgtLcWECRMAABMmTOCUqar2NDU1lX89c+ZMTpMGw8LCkJWVhVOnTiEqKgouLi7YunUr55pY7iuvRaF0dHQQHR0NHx8fSCQSBAcHc75swiIrMjISIpEIgwYNQkZGBg4cOIBJkybBwsICMpkM9fX1St3OmJKSAi8vLxgbG+PWrVuIiIhAYmIiEhMTcfnyZYjFYgQHByu7qwCArJwc2FhaQldXFyezs+Hz9tuccgC27fAi5LGgyfuoybUBQH19Pa5fv47AwEBIpVLcuXNH6ZM262O1swULFuDMmTO4d+8exowZg/DwcAQFBXHKor7LzZw5c6CnpwepVIrMzEy0tiq3rF1wcDCsra2hr6+PyMhInDp1Cj/88APmzZsHV1dXPHjwAIcOHVK6Lhb7euDAAbi5ucHIyAilpaWIioqCm5sbHBwcIJPJUF1djVU8JqezwrJdtWTP+PCorKwMVlZWnAtVJS8vL6Z5Fy5cYJon+5tJIx5+fkiJjYVAIID/woXIP34cWlpaCn++Vcnbi15klZWVTD7z1uT+q+lYrx7JdS5PT1ivHqmrq8ssq6KiAvb29rxzNLnvbtu2jWneH3/8wTRPk1eP/M9//sMsC2C/eqSic2+fmMyoadKzsiAaOxbDzcxgOmQI3Fxc8G1mprrLIoQQQrqhgcJzJpPJEBUbi88+/li+bW1oKHbHx0MqlaqxMkIIIaQ7Gig8Z5evXkWgvz9MhwyRbzMyNMRHs2ej5MoVNVZGCCGEdMdrMiNRnuOYMXDsYULJosBANVRDCCGEPBtdUSCEEEKIQi/sFQUuayw8y8SJE5nm9aW7FPqK3377jVkW69nPrHF5stzzkpubyzTvbR63JvdFXG81VcTGxoZpXmVlJdM8VuuGAMB4ExNmWQCg3E2n3NEVBUIIIYQoRAMFQgghhChEAwVCCCGEKEQDBUIIIYQoRAMFQgghhCjEe6CQnZ0NR0dH2NvbY8eOHWrNioqKQkFBAb7//vtu/2/BggWoqKhQagbr+vXrcerUKRw5ckS+bdGiRTh8+DCSk5Oxd+9eTktMA2z/bn0xjwXWNUkkEsyZMwdhYWG8s0QiEYKCghAUFARvb29oa2urNS8mJgbl5eU4e/asfNu6detQWlqK3Nxc5ObmYurUqWrL6+zRo0eIiorC0qVLsWzZMt53q/SFvssyr62tDf7+/vDx8cH06dOxd+9epTMSEhLQ0NDQbbGx5cuX4+rVqygtLe31omFhYWH46quvEBsbK982b948fPnll9i3bx8+//xz+WqXvcH6fabDpbIy/Gv+/G7b31+yBL9yXH2TVbvyGihIJBKsWLEC6enpKCoqQmpqKqflNVllffvtt5g3b1637cOGDcMbb7yB2r9ZqOlpmZmZWLlyZZdthw8fRmBgIIKCgnD27FnM76Fh/w7Lv1tfzGNBFTWlpKTA0tKSd236+vpwcnJCSkoKkpOToaWlhdGjR6s1LyUlBQEBAd22x8XFwdPTE56enjh9+rTa8jo7ePAgRCIR9u/fjz179mD48OGccoC+0XdZ5wmFQiQnJ+PkyZPIyMhAXl4eioqKlMpISkrCtGnTumzz8vKCr68vxo0bh7Fjx2Lnzp29yvrxxx+xadOmLtuKi4uxbNkyhIWFoba2FrNmzep1bazfZzqMs7eHrlCIgk5/q0tlZZBIJBA5OCidx7JdeQ0UCgsLYWVlBUtLSwiFQgQEBOC7775TW1ZhYWGPK5GtX78eX3zxBZ6xUGaPiouL8fDhwy7b/vzzT/nX/fv3Vyqvc52s/m59MY8F1jU1NDTgzJkzeO+995jU169fP+jo6EBLSwsCgQDNzc1qzTt37hwePHjAqwZV5nVobm5GWVkZ3nrrLQCAQCCAvr4+57y+0HdZ52lpacn/hd7e3o729vZnrozbk/z8fNy/f7/LttDQUERFRUEsFgPo/bN0ysrK0NTU1GVbUVGRfG2d8vJypa4Ms36f6WzT6tWI2LVL/n3Erl2I4LhkNct25TVQqKur6zJaNzc35zyaYpnV2dSpU9HQ0MD0YTlLlixBeno63nnnHcTHxyv9etb72tfyWGBd044dO/DJJ5+gXz/+034ePXqEixcvIiQkBIsXL0ZbWxtu3rypMXmdhYSEID8/HzExMRg4cKDa8xoaGjBw4EDs27cPK1asQExMDFpbuT+Wpi/0XVXso0QigY+PD1xdXeHm5obx48fzygMAW1tbuLu74/z588jJyYGzszPvTAB466238Msvv/DKYPU+Y2djAxMjI+SdP4+CoiK8pKcHhx6Wfe4Nlu36j57M2L9/f4SGhiI6OpppblxcHHx9fZGVlaXUJSvyz5SXlwdDQ0OM6WENDy50dXVhZWWFhIQExMfHQyAQ9LhGvLryOiQmJkIkEsHDwwP19fW8n+bIIk8ikaCiogLTpk3Dnj170L9/f3z77be86iLK09bWxsmTJ5Gfn4+SkhJcu3aNd6aOjg4MDQ3h6uqKNWvW4OjRo7wzZ8+eDYlEgpycHM4ZrN9nNq5cicjoaGzavRsRT330rS68BgpmZmaoqamRf19bWwtzc3O1Z3WwsLDAiBEjkJmZidzcXAwdOhQZGRmcJyA+LSsrC5MnT1b6daz3ta/lscCypuLiYuTm5sLb2xvh4eEoLCzE+vXrOddmYWGBhw8foqWlBVKpFNevX8ewYcM0Jq/D3bt3IZVKIZPJkJycDJFIpPY8Y2NjGBsby+dgTJo0CRUVFZxr+qf3XVXkdWZgYICJEyciLy+Pd1ZNTQ3S0tIAPLmsLpVKeZ3Lp0yZAhcXF+zqdKmfC9bvM1ajRmHUiBEwGjQIo62tOdfFsl15DRScnZ1x48YNVFVVQSwWIzU1FTNmzFB7Vodr165hwoQJ8slR9fX1ePfdd9HY2Mg5c8SIEfKvPTw8OF3CZb2vfS2PBZY1hYWFISsrC6dOnUJUVBRcXFywdetWzrU1NTVh6NCh0NF5shSLhYVFt89r1ZnXwdTUVP71zJkzeU/yY5E3ePBgGBsby0+QJSUlXY5ZZf3T+64q8u7duyef29Xa2oqff/4Zr7zyCue8DidOnJD/w8zGxgZCoZDzuVwkEsHPzw+bN29GW1sbr7pU8T5TWV2N6ro6XnWxbFdei0Lp6OggOjoaPj4+kEgkCA4O5nz5lUXWnj17MHHiRAwePBhnzpzB3r17kZqayqkeAIiMjIRIJMKgQYOQkZGBAwcOYNKkSbCwsIBMJkN9fX2vb9HpjOXfrS/msaCJNXWor6/H9evXERgYCKlUijt37nS7Tex55x04cABubm4wMjJCaWkpoqKi4ObmBgcHB8hkMlRXV2OVEpOuWOd1tnDhQuzevRvt7e0YOnQor9tVNbGfaPrxeffuXaxduxZSqRRSqRTTp0/Hm2++qVRGSkoKvLy8YGxsjFu3biEiIgKJiYlITEzE5cuXIRaLERwc3KusTz/9FA4ODjAwMMChQ4eQkpKCWbNmQSAQYPPmzQCeTGjcv39/r/JYv888LSsnBzaWltDV1cXJ7Gz4cFy0jGW7asmeMUWzrKwMVlZWnIJVzd7enmnekCFDmObx+cyrr6usrGTyGTrr/kurR2qGpKQkpnksV4+sqKhgcm7S5HNv58vZLLBePXLmzJlM865cucIsqyI//29/xsPPDymxsRAIBPBfuBD5x48rvGuE9SrFis69/+jJjIQQQsiLIj0rC6KxYzHczAymQ4bAzcUF32ZmqrssGigQQggh6iaTyRAVG4vPPv5Yvm1taCh2x8fLn/mgLjRQIIQQQtTs8tWrCPT3h2mnj8GNDA3x0ezZKGH48QcXvCYzEkIIIYQ/xzFj4NjDZMNFgYFqqKYruqJACCGEEIWeeUWhn0SC/gzut+7AcoYm6+fEs77l6ZtvvmGa98477zDL4rKyGel6nz9fxcXFzLIAMF9/4H5pKdO84jt3mGW9+uqrzLKI8h49eqTuEp6J9bFQx/N5Bp21vqDnXrqiQAghhBCFaKBACCGEEIVooEAIIYQQhWigQAghhBCFaKBACCGEEIU4DxQulZXhX/Pnd9v+/pIl+JXjAjbZ2dlwdHSEvb09duzYofTrY2JiUF5ejrNnz8q3rVu3DqWlpcjNzUVubi6mTp3a67ywsDB89dVXiI2NlW+bN28evvzyS+zbtw+ff/45Xn75ZaXrBIDbt29j48aN8v9CQ0ORnZ3NKau2thazZs2Cp6cnvLy8cPDgQU45nfFtC1XnscCyJhZtEBISgtjYWGzbtk2+zcXFBdu2bUNSUhIsLS17ncX6WOigiuMeACQSCebMmcNrAacO1HfVn8e3PRMSEtDQ0NBt8bLly5fj6tWrKC0t7fWCfCyznsb63Kup7cp5oDDO3h66QiEKiork2y6VlUEikUDk4KB0nkQiwYoVK5Ceno6ioiKkpqYqvcxsSkoKAgICum2Pi4uTLwF6+vTpXuf9+OOP2LRpU5dtxcXFWLZsGcLCwuSdhIthw4YhMjISkZGR2LRpE4RCIUQiEacsHR0dbNy4Ebm5ufjuu++QlJSEa9euccoC2LSFKvNYYF0TizbIz8/vdjDX1tZi3759KC8vVyqL9bHQgfVx37leZQZCilDfVX8ewL89k5KSMG3atC7bvLy84Ovri3HjxmHs2LHYuXPnc896Gstzrya3K6+PHjatXo2IXbvk30fs2oUIjkvDFhYWwsrKCpaWlhAKhQgICFD6fthz584xfb5CWVkZmpqaumwrKiqSP3e7vLwcxsbGvH/PlStXYGJiwjnL1NQUjo6OAAB9fX1YW1vj9u3bnOth0RaqzGOBdU0s2qC8vBzNzc1dttXV1aG+vl7pelgfC52xPO4BoKGhAWfOnMF7773Huzbqu+rPY9Ge+fn5uP/UM3xCQ0MRFRUFsVgM4Mly1s8762ksz72a3K68Bgp2NjYwMTJC3vnzKCgqwkt6enDguDxwXV0dhg8fLv/e3NwctbW1fMqTCwkJQX5+PmJiYjBw4EAmmQDw1ltv4ZdffuGdc+HCBUycOJFBRcCtW7dQWlrK+eoEwL4tVNm2XKmyJhZtoCosjgWWxz0A7NixA5988gn69eM/ZYr6rvrzWLZnZ7a2tnB3d8f58+eRk5MDZ2dnjcjqwPe41+R25d2SG1euRGR0NDbt3o2IlSv5xjGXmJgIkUgEDw8P1NfXY8uWLUxyZ8+eDYlEgpycHF457e3tKC4uhouLC++ampubERISgsjISAwYMIB3HlGeJrcBy2OB1XGfl5cHQ0ND5k9GJeqhyvbU0dGBoaEhXF1dsWbNGhw9elQjsgDNPu5Z4D1QsBo1CqNGjIDRoEEYbW3NOcfMzAw1NTXy72tra2Fubs63PNy9exdSqRQymQzJyclM/pU3ZcoUuLi4YFeny69clZSUYOTIkbyvdDx+/BghISHw8/ODt7c3ryzWbaGqtuVDFTWxbANVYHkssDrui4uLkZubC29vb4SHh6OwsBDr16/nnEd9V715rNuzs5qaGqSlpQF4clldKpVy/riWZRar416T25XJtaHK6mpU83wetrOzM27cuIGqqiqIxWKkpqZixowZvGvr/Hz+mTNn8p6kIxKJ4Ofnh82bN6OtrY1veUw+dpDJZFi9ejVsbGywePFi3jWxbgtVtS0frGti3QaqwPpYYHHch4WFISsrC6dOnUJUVBRcXFywdetWznnUd9Wbx7o9Oztx4gQmT54MALCxsYFQKERjY6Nas1ge95rcrryXmc7KyYGNpSV0dXVxMjsbPm+/za0QHR1ER0fDx8cHEokEwcHBSl++OnDgANzc3GBkZITS0lJERUXBzc0NDg4OkMlkqK6uxiolJl19+umncHBwgIGBAQ4dOoSUlBTMmjULAoEAmzdvBvBkAtr+/fuVqrNDW1sbysrKEBwczOn1HQoKCnDs2DHY2dnJb3n77LPPMGXKFE55LNpClXkssK6JRRuEhobCzs4O+vr62LNnD9LS0tDc3Iy5c+diwIABWLVqFaqrq3t1mxPrY+FprI571qjvqj+PhZSUFHh5ecHY2Bi3bt1CREQEEhMTkZiYiMuXL0MsFvf6vMky62ksz72a3K5aMplMpuh/Xi0pgd3fXI7x8PNDSmwsBAIB/BcuRP7x49DS0urxZ1muHmlmZsYsCwDc3NyY5vn7+zPN60urR1ZWVsKOx+S4DmVlZbCysmJQ0RMs7yJYt24dsyzg+a8eqcxxD/Sd1SMrKipgb2/PO4d132Xpt99+Y5rn5OTENI81lqtHvqjnXl4fPaRnZUE0diyGm5nBdMgQuLm44NvMTD6RhBANR8c9IX0L54GCTCZDVGwsPvv4Y/m2taGh2B0fL3/OACHkn4WOe0L6Hs4DhctXryLQ3x+mQ4bItxkZGuKj2bNRcuUKk+IIIZqFjntC+h7Okxkdx4yBYw8TIxYFBvIqiBCiuei4J6TvodUjCSGEEKLQM68oSLW1md6pwJKtrS3TPNazxrk+O1yRefPmMcu6fv06sywAXR4T+k/GcsZyfHw8sywA0NPTY5qXd+MG07wJEyYwzSPK6fzgHb5Y36XA4sF1nVVVVTHNY7EGSYfjx48zywKe310UdEWBEEIIIQrRQIEQQgghCtFAgRBCCCEK0UCBEEIIIQrRQIEQQgghCvEeKGRnZ8PR0RH29va9WqxGlVnr16/HqVOncOTIEfm2RYsW4fDhw0hOTsbevXuVWko0ISEBDQ0NuHz5cpfty5cvx9WrV1FaWoovvvhCLfWxrq2ztrY2+Pv7w8fHB9OnT8fevXs55XTGsp+wwromTToWVNk/AOD999/HRx99hAULFmDRokWccwDNbgdV5LHAsiYWx7sq+5tIJEJQUBCCgoLg7e0NbW1tpV7/4YcfYuvWrQgPD5dve+mll7B06VJs2LABS5cuVequIdbvM53V1tZi1qxZ8PT0hJeXFw4ePMgppwOrfsJroCCRSLBixQqkp6ejqKgIqampnJeuZZGVmZmJlStXdtl2+PBhBAYGIigoCGfPnsX8+fN7nZeUlIRp06Z12ebl5QVfX1+MGzcOY8eOxc6dO9VSH+vaOhMKhUhOTsbJkyeRkZGBvLw8FBUVccoC2PYTVljXpGnHgir7R4c9e/YgISGB162emtwOqshjgXVNLI53VfU3fX19ODk5ISUlBcnJydDS0sLo0aOVyrhw4QK+/PLLLtumTp2Ka9euYcuWLbh27RreeuutXuexfp/pTEdHBxs3bkRubi6+++47JCUl4dq1a5yyWPYTXgOFwsJCWFlZwdLSEkKhEAEBAZyfR8Aiq7i4GA8fPuyy7c8//5R/3b9/f6Xy8vPzcf/+/S7bQkNDERUVBbFYDEC55yWwrI91bZ1paWnh5ZdfBgC0t7ejvb39mSsD/h2W/YQV1jVp2rGgyv7Bkia3gyryWGBdE4vjXZX9rV+/ftDR0YGWlhYEAgGam5uVen1FRUWX8ywAODg4oKCgAMCTpaIdHBx6ncf6faYzU1NTODo6AngySLK2tsbt27c5ZbHsJ7wGCnV1dV0etmNubo7a2lq1Zz1tyZIlSE9PxzvvvMP7QTe2trZwd3fH+fPnkZOTA2dnZ42pj2VtEokEPj4+cHV1hZubG8aPH885S5VtyxXrml6EY4F13/3000+xcOFCZGRkcM7Q5HZQRR4LqqiJ5fHegUV/e/ToES5evIiQkBAsXrwYbW1tuHnzJu/aBgwYIH+zf/jwIQYMGMA7k+X7DADcunULpaWlEIlEnF7Psp/0icmMcXFx8PX1RVZWFmbNmsUrS0dHB4aGhnB1dcWaNWtw9OhRjamPZW3a2to4efIk8vPzUVJSwvnyF9EcLPtHbGwsDh48iO3bt+PEiRO4dOkSw0rJ86aK451Ff9PV1YWVlZX8Iy6BQAA7OzvetakCy/eZ5uZmhISEIDIykskghi9eAwUzM7Mujwatra2Fubm52rMUycrKwuTJk3ll1NTUIC0tDcCTSztSqZTzxJWn8a1PFbUZGBhg4sSJyMvL45zxPNpWWaxrehGOBZb9Y8hfq0cOHjwY7u7unD/71OR2UEUeC6qsicXx3oFFf7OwsMDDhw/R0tICqVSK69evY9iwYbxra2pqgoGBAYAn+9zU1MQ7swPf8/jjx48REhICPz8/eHt7c85h2U94DRScnZ1x48YNVFVVQSwWIzU1FTNmzFB7VmcjRoyQf+3h4cH7stWJEyfkncDGxgZCoRCNjY0aUR+r2u7duye/LNfa2oqff/4Zr7zyCue6VNW2fLCu6UU4Flj1j5aWFvlnsi0tLSgsLISlpSWnmjS5HVSRxwLrmlgf7x1Y9LempiYMHToUOjpPliWysLDoNheCi9LSUvn6IxMmTOh2t4ayWJ3HZTIZVq9eDRsbGyxevJhXTSz7CedlpoEnl5aio6Ph4+MDiUSC4OBgjOlhCdrnlRUZGQmRSIRBgwYhIyMDBw4cwKRJk2BhYQGZTIb6+nqlbtFJSUmBl5cXjI2NcevWLURERCAxMRGJiYm4fPkyxGIxgoOD1VIf69o6u3v3LtauXQupVAqpVIrp06fjzTff5JQFsO0nrLCuSdOOBVX2jwcPHmDDhg0Anny2PXXqVEycOJFTlia3gyryWGBdE4vjXVX9rb6+HtevX0dgYCCkUinu3Lmj9Jt6cHAwrK2toa+vj8jISJw6dQo//PAD5s2bB1dXVzx48ACHDh3qdR7r95nOCgoKcOzYMdjZ2WHq1KkAgM8++wxTpkxROotlP9GSyWQyRf+zrKwMVlZWnIJVzcvLi2nehQsXmOZxPXEqwrI+TV89srKyksnnkJrcf1ljvXpkbm4u07y+snpkRUUF7O3teeew7rssV4+0sbFhlgVo/uqRHXdHsKDpq0cqOvf2icmMhBBCCOGGBgqEEEIIUYgGCoQQQghRiAYKhBBCCFGI110PyurP4LaWDkuWLGGWBbCfzGhra8s0j+UDj/g8Sa8nS5cuZZrXF2zbto1pnozx0wL/+9cjfck/Q8dzL1hgPYFuwYIFTPNYP5qc5eTNr7/+mlkW8PzOvXRFgRBCCCEK0UCBEEIIIQrRQIEQQgghCtFAgRBCCCEK0UCBEEIIIQrxHihkZ2fD0dER9vb22LFjB6eMS2Vl+Nf8+d22v79kCX7luFjH7du3sXHjRvl/oaGhyM7OViojISEBDQ0N3Z4tvnz5cly9ehWlpaVKPdM7JCQEsbGxXWa8u7i4YNu2bUhKSlJqYZ2YmBiUl5fj7Nmz8m3r1q1DaWkpcnNzkZubK39WOBcikQhBQUEICgqCt7c3tLW1OWcBbPoJa6xrYpnn6uqKZcuWYfny5Xj99dc556ji2Fq2bBmsra151dWZJreDKvJYYFkTi/ZU5fmIZX9ra2uDv78/fHx8MH36dOzdu1fpDNbvC51p6nmX10BBIpFgxYoVSE9PR1FREVJTUzktNzvO3h66QiEKiork2y6VlUEikUDk4MCptmHDhiEyMhKRkZHYtGkThEIhRCKRUhlJSUmYNm1al21eXl7w9fXFuHHjMHbsWOzcubPXefn5+d0aq7a2Fvv27UN5eblStaWkpCAgIKDb9ri4OHh6esLT0xOnT59WKrODvr4+nJyckJKSguTkZGhpaWH06NGcsgB2/YQl1jWxzDMxMcFrr72G+Ph47N+/H7a2tjA0NOSUpYpj68MPP8SxY8c4vfZpmtwOqshjgXVNLNpTlecjlv1NKBQiOTkZJ0+eREZGBvLy8lDU6djoDdbvCx00+bzLa6BQWFgIKysrWFpaQigUIiAgAN999x2nrE2rVyOi0+IgEbt2IWLVKj7lyV25cgUmJiZKr4Wen5/fbUnT0NBQREVFQSwWA1Dunt3y8nI0Nzd32VZXV4f6+nql6gKAc+fO4cGDB0q/rrf69esHHR0daGlpQSAQdKtbGSz7CSusa2KZN2TIENTU1ODx48eQSqWoqqritTog62PLzc2N2b30mtwOqshjgXVNLNpTlecjlv1NS0sLL//1jJD29na0t7dDS0tLqQzW7wudaep5l9dAoa6ursvKgebm5qjl+OAXOxsbmBgZIe/8eRQUFeElPT04MFhBEHjyMCVWqzna2trC3d0d58+fR05ODpydnZnkshISEoL8/HzExMRg4MCBnDIePXqEixcvIiQkBIsXL0ZbWxvn9dUBtv2EFdY1scxraGjAyJEjoaenB4FAAFtbWxgYGHCuTZXHFl+a3A6qyGNBE2tShMX5iDWJRAIfHx+4urrCzc0N48eP553J4n1Bk8+7GjWZcePKlYiMjsam3bsRsXIlk8z29nYUFxfDxcWFSZ6Ojg4MDQ3h6uqKNWvW4OjRo0xyWUhMTIRIJIKHhwfq6+uxZcsWTjm6urqwsrJCQkIC4uPjIRAImCz7THqnsbERZ86cQXBwMObOnYvbt2/jGavB94oqji1CnoXV+Yg1bW1tnDx5Evn5+SgpKWHy1FsW7wuafN7lNVAwMzPrss55bW0tzM3NOedZjRqFUSNGwGjQIIy2tuZTmlxJSQlGjhzJbDRbU1ODtLQ0AE8u7UilUqU/0lCVu3fvQiqVQiaTITk5Wek5GR0sLCzw8OFDtLS0QCqV4vr16xg2bBjnulj3ExZY18Q679dff0VcXBwSExPR2tqKxsZGzlmAao4tFjS9HfpC31UVVucjVTEwMMDEiRORl5fHO4vF+4Imn3d5DRScnZ1x48YNVFVVQSwWIzU1FTNmzOATicrqalTX1fHK6Izlxw4AcOLECUyePBnAk2eAC4VC3idxVkxNTeVfz5w5k/PElaamJgwdOhQ6Ok+WArGwsOj2mZwyVNFP+GJdE+u8js9RBw4cCDs7u24zrLlgfWyxoOnt0Bf6rqqwOh+xdO/ePTx8+BAA0Nraip9//hmvvPIK71wW7wuafN7ltSiUjo4OoqOj4ePjA4lEguDgYF6TrrJycmBjaQldXV2czM6Gz9tv8ykPbW1tKCsrQ3BwMKfXp6SkwMvLC8bGxrh16xYiIiKQmJiIxMREXL58GWKxWKns0NBQ2NnZQV9fH3v27EFaWhqam5sxd+5cDBgwAKtWrUJ1dXWvbmM5cOAA3NzcYGRkhNLSUkRFRcHNzQ0ODg6QyWSorq7GKo4T1urr63H9+nUEBgZCKpXizp07vN6oWPcTFljXxDpvzpw50NPTg1QqRWZmJlpbWzlnAWyPrQULFuDMmTO4d+8exowZg/DwcAQFBXHK0vR26At9l0V7qvJ8xLK/3b17F2vXroVUKoVUKsX06dPx5ptvKpXB+n2hgyafd7Vkz/jws6ysDFZWVpwLfdrfrR7p4eeHlNhYCAQC+C9ciPzjxxXOSE1S8pkIf2fevHlM8+bOncs0j+VM6w0bNjDLAtivYFZZWcnksznW/Zcl1qtHRv7NaqrKHFsA+9UjdXV1meZpqoqKCtjb2/POYd1329ramGUp87yX3qisrGSap8mrR+7qdPcRC8/r3KsxkxnTs7IgGjsWw83MYDpkCNxcXPBtZqa6yyLkhUfHFiGED40YKMhkMkTFxuKzjz+Wb1sbGord8fGQSqVqrIyQFxsdW4QQvjRioHD56lUE+vvDdMgQ+TYjQ0N8NHs2Sq5cUWNlhLzY6NgihPDFazIjK45jxsCxh0kWiwID1VANIf8cdGwRQvjSiCsKhBBCCNFMz/WKQivHhW168t577zHLAoDff/+daV5sbCzTvJkzZzLLevfdd5llEW6UXcn07/BZKbQnEyZMYJpH1IvlXScsz0UAMGjQIKZ5rNaF6MDyDrZVc+YwywIAfjdN9x5dUSCEEEKIQjRQIIQQQohCNFAghBBCiEI0UCCEEEKIQjRQIIQQQohCvAcK2dnZcHR0hL29fa8WM3peWcuWLYO1tTVef/11Xjmdubq6YtmyZVi+fDmn3JiYGJSXl+Ps2bPybevWrUNpaSlyc3ORm5vb69nrISEhiI2N7bJmgIuLC7Zt24akpCRez2Nva2uDv78/fHx8MH36dOzdu5dzVgeWbcsK65r45q1fvx6nTp3CkSNH5NsWLVqEw4cPIzk5GXv37uW8pPn777+Pjz76CAsWLMCiRYs4ZXSmqcf9i5DHgqbtI+vzUUJCAhoaGrotirR8+XJcvXoVpaWl+OKLL3qVxfK8C6ju3HuprAz/mj+/2/b3lyzBrxwXh2LVT3gNFCQSCVasWIH09HQUFRUhNTWV81KiLLMA4MMPP8SxY8c4v/5pJiYmeO211xAfH4/9+/fD1tYWhkre7pmSkoKAgIBu2+Pi4uDp6QlPT0+cPn26V1n5+fndGr62thb79u1DeXm5UnU9TSgUIjk5GSdPnkRGRgby8vJQVFTEOY9127LAuiYWeZmZmVi5cmWXbYcPH0ZgYCCCgoJw9uxZzO/hRNJbe/bsQUJCAuLj4zlnAJp93Gt6HguauI+sz0dJSUmYNm1al21eXl7w9fXFuHHjMHbsWOzcubNXWSzPu4Dqzr3j7O2hKxSioNO59lJZGSQSCUQODkrnsewnvAYKhYWFsLKygqWlJYRCIQICAjivcsgyCwDc3NyY3k87ZMgQ1NTU4PHjx5BKpaiqqlJ6yc5z587hwYMHTOopLy9Hc3Nzl211dXWor6/nna2lpYWX/1o9sL29He3t7c9cafDvsG5bFljXxCKvuLgYDx8+7LLtzz//lH/dv39/zvWxpMnHvabnsaCJ+8j6fJSfn4/7T602HBoaiqioKIjFYgC9XyWS5XkXUO25d9Pq1YjotMJkxK5diOC4PDfLfsJroFBXV4fhw4fLvzc3N0dtba3as1ShoaEBI0eOhJ6eHgQCAWxtbWFgYMAkOyQkBPn5+YiJicHAgQOZZPIlkUjg4+MDV1dXuLm5Yfz48ZyzNLFtWdekyn1csmQJ0tPT8c477/C6GvDpp59i4cKFyMjI4FWPJh/3mp7HQl/Yx57Y2trC3d0d58+fR05ODpydnXnlaeJ5187GBiZGRsg7fx4FRUV4SU8PDj0s+9wbLNuVJjP2UmNjI86cOYPg4GDMnTsXt2/fhkwm452bmJgIkUgEDw8P1NfXY8uWLQyq5U9bWxsnT55Efn4+SkpKcO3aNXWX1GfFxcXB19cXWVlZmDVrFqeM2NhYHDx4ENu3b8eJEydw6dIlxlUSolo6OjowNDSEq6sr1qxZg6NHj3LO0tTzLgBsXLkSkdHR2LR7NyKe+ihSXXgNFMzMzFBTUyP/vra2Fubm5mrPUpVff/0VcXFxSExMRGtrKxobG3ln3r17F1KpFDKZDMnJyRCJRAwqZcfAwAATJ05EXl4e5wxNbFvWNT2PfczKysLkyZM5vXbIX6tHDh48GO7u7rw+09bk417T81joC/vYk5qaGqSlpQF4clldKpVyntyryeddq1GjMGrECBgNGoTR1tacc1i2K6+BgrOzM27cuIGqqiqIxWKkpqZixowZas9SlY7P7QcOHAg7O7tuM3K5MDU1lX89c+ZMtU+UAoB79+7JPytvbW3Fzz//jFdeeYVznia2LeuaVLWPI0aMkH/t4eGBmzdvKp3R0tIin+vQ0tKCwsJCXnfFaPJxr+l5LPSFfezJiRMn5ANlGxsbCIVCzv9Y08TzbmeV1dWorqvjlcGyXXktCqWjo4Po6Gj4+PhAIpEgODhY6Ql+qsgCgAULFuDMmTO4d+8exowZg/DwcAQFBXHOA4A5c+ZAT08PUqkUmZmZaG1VbkmOAwcOwM3NDUZGRigtLUVUVBTc3Nzg4OAAmUyG6upqrOrlxJXQ0FDY2dlBX18fe/bsQVpaGpqbmzF37lwMGDAAq1atQnV1NadbYu7evYu1a9dCKpVCKpVi+vTpePPNN5XO6cC6bVlgXROLvMjISIhEIgwaNAgZGRk4cOAAJk2aBAsLC8hkMtTX1/f6lrDOHjx4gA0bNgB4Mvdk6tSpmDhxotI5HTT5uNf0PBY0cR9Zn49SUlLg5eUFY2Nj3Lp1CxEREUhMTERiYiIuX74MsViM4ODgXmWxPO+qYl+flpWTAxtLS+jq6uJkdjZ83n6bUw7LfqIle8YH7WVlZbCysuIUrGptbW1M83Z1mmnKgiavHrlx40ZmWQC6TJhhobKyEnYcJ/B0psn918vLi2ne9u3bmebR6pHcVFRUwN7enneOJvddFs/h6Oyrr75imsd69UiW597kqKi//RkPPz+kxMZCIBDAf+FC5B8/rvCuM5YrMgOKz700mZEQQgjRAOlZWRCNHYvhZmYwHTIEbi4u+DYzU91l0UCBEEIIUTeZTIao2Fh89vHH8m1rQ0OxOz4eUqlUjZXRQIEQQghRu8tXryLQ3x+mf92hBABGhob4aPZslFy5osbKeE5mJIQQQgh/jmPGwLGHyYaLAgPVUE1XdEWBEEIIIQo9866H4uJi6OrqPs96CEFbWxuvR0Z3oP5Lnjfqu+RFpqj/PnOgQAghhJC+jT56IIQQQohCNFAghBBCiEI0UCCEEEKIQjRQIIQQQohCNFAghBBCiEI0UCCEEEKIQjRQIIQQQohCNFAghBBCiEI0UCCEEEKIQjRQIIQQQohCNFAg5C8bN27Ev//9b+Y/y0JGRgbmz5+v8P9fuHABHh4eKvv9Tk5OuHXrFufXz5gxAxcuXGBYUe+EhITg+PHjvDJU/bclRNPRWg+kT3jzzTfR2NgIbW1taGtrw9raGr6+vnj//ffRrx+/8fKFCxewZs0a5OXlMar2740ePRrZ2dkYOXKk2mroK+hvS/o6HXUXQMjzEhcXh0mTJqGpqQkFBQXYunUrSkpK8L//+7/qLo0QQjQWffRA+pwBAwZgypQp2LNnD44fP45r164BAMLDwxEdHS3/uQMHDuCNN97AG2+8gdTUVIwePRo3b97s8rN//vknFi5ciDt37sDJyQlOTk5oaGhASUkJ/Pz8IBKJMGnSJIWDkcDAQGRlZQEAfvnlF4wePRo5OTkAgHPnzsHX1xcAkJaWhg8++AAA8D//8z8AAF9fXzg5OeHUqVPyvMTERLz++ut444038O233yr8G8ydOxfR0dGYM2cOnJycsGTJEjx48ACrV6+GSCSCv78/ampq5D/fed9zc3Ph7e0NJycnuLu7IyEhAQBw//59LF68GM7OzpgwYQI+/PBDSKVSAE+u6Pz8888AgJiYGHzyySdYu3YtnJycMGPGDFy+fFn+u8rKyvCvf/0LTk5OCAsLw4oVK7q0S2dpaWmYM2cOIiMj8dprr2HatGk4d+5cl/1MTU0FAERERODjjz+W/78dO3YgODgYMpkMYrEYX3zxBby8vDBp0iRs3LgRra2tPf7O+Ph4uLu7w8nJCe+8806X30fIPxENFEif5ejoiKFDh+LixYvd/l9eXh6SkpJw6NAh/PDDDwo/X3/ppZdw4MABmJiYoKioCEVFRTA1NcXWrVsRFBSEX3/9FT/88AOmT5/e4+tdXFxQUFAAACgsLMSIESNQWFgIACgoKICLi0u31xw5cgQAkJ6ejqKiInh7ewMAGhsb0dTUhLy8PGzduhWRkZH473//q3D/T506he3btyMvLw/V1dWYM2cO/P39UVBQACsrK4VzMNavX4/IyEgUFRXhu+++g6urKwDg0KFDMDU1xblz53D27FmsWrUKWlpaPWb85z//wYwZM3Dx4kW8+eab2Lx5MwBALBZj+fLleO+991BQUICZM2fi9OnTCvcBAEpKSmBhYYHz588jLCwMy5cvxx9//NHt58LDw3Ht2jWkpaXh4sWLOHbsGL744gtoaWlh586dqKysxIkTJ5CdnY07d+70uP+///47jhw5gmPHjqGoqAgJCQkwNzd/Zn2EvOhooED6NBMTkx7fTL///nv4+fnBxsYGenp6Xf4l2hs6Ojqorq7G/fv38fLLL2P8+PE9/tyECRO6DBQWL14sHygUFhZiwoQJSv3OZcuWQSAQwNPTEy+99BIqKysV/ryfnx8sLCwwYMAAeHh4YMSIEZg0aRJ0dHQwbdo0XLlyReHvuXHjBh49eoSBAwfC3t5evv3u3buoq6uDQCCAs7OzwoHCa6+9Bk9PT2hra8PX1xe//fYbAODSpUtob29HUFAQBAIB3n77bTg4ODxzvw0NDREcHAyBQABvb29YWlrKr8p0pqenh+3btyMqKgpr1qzB//t//w9Dhw6FTCbD0aNH8fnnn2PQoEHQ19fH4sWLkZmZ2S1DW1sbYrEYFRUVePz4MYYPHw4LC4tn1kfIi44GCqRPa2howMCBA7ttv3PnDoYOHSr/ftiwYUrlbt26FVVVVZg+fTr8/f3x008/9fhz48ePR1VVFRobG/Hbb7/B19cXt2/fxv3791FSUgJnZ+de/85BgwZBR+f/n3akp6eHP//8U+HPGxsby7/W1dXt8n3//v0Vvnbfvn3Izc3F5MmTERgYiKKiIgDAggULMHLkSMyfPx9TpkxBfHx8r353//790dbWhvb2dty5cwempqZdBhh/97d/+ufNzMxw586dHn923LhxGD58OGQymfwqz/3799HS0gI/Pz84OzvD2dkZISEhePDgQbfXjxw5Ep9//jliYmIwadIkrFy5Eg0NDc+sj5AXHQ0USJ9VUlKChoYGvPbaa93+n4mJSZc3gNu3byvM6elfzaNGjcLu3btx7tw5LFy4EGFhYT2+8erp6cHe3h7JycmwsbGBUCiEk5MTkpKSYGFhAUNDQ457pzqOjo748ssv8fPPP2Pq1KlYsWIFAEBfXx/h4eH48ccf8eWXX+LQoUNKf34/ZMgQNDQ0oPPNWM/62wPo8edNTEx6/NkjR47g8ePHMDExwcGDBwEAgwcPRv/+/ZGZmYmLFy/i4sWL+OWXX+QDoKf5+Pjg66+/xk8//ST/2IKQfzIaKJA+59GjR/jpp5+watUqvPvuuxg9enS3n5k2bRrS0tJQUVGBlpYW7N+/X2GekZER/vjjDzQ1Ncm3paen4/79++jXrx8MDAwAQOFtmBMmTMDhw4fl8xEmTpzY5fueGBsb83quAVdisRgZGRloamqCQCDAyy+/LN+vn376CTdv3oRMJsOAAQOgra2t8KMHRcaPHw9tbW0cPnwY7e3tOH36dJeJjj25f/8+kpOT8fjxY3z//feoqKiAp6dnt5+rrKzEnj17sGPHDmzfvh0HDx7E1atX0a9fPwQEBGDbtm24d+8egCeDj/z8/G4Zv//+O86dOwexWAyhUAhdXV3et9cSouno9kjSZyxZsgTa2tro168frK2tMW/ePMyZM6fHn/X09MTcuXMRFBQELS0tLF26FCdOnIBQKOz2s1ZWVpgxYwamTp0KiUSCzMxM5OfnIyoqCq2trTAzM0N0dDT69+/f4+9ycXHB//3f/8kHBi4uLmhubn7mQGH58uUIDw9Ha2srIiMjYWRkxOEvwk16ejo2b94MiUQCS0tL7NixAwBw8+ZNbN68Gffv34eBgQE++OAD+UTH3hIKhYiJicGGDRuwe/duuLu7w8vLq8e/ewdHR0fcvHkTrq6uMDY2xr59+zB48OAuP9Pe3o41a9Zg4cKFePXVVwEAK1euxNq1a/Htt99izZo1+Pe//43Zs2fjwYMHMDU1xQcffAB3d/cuOWKxGLt27UJFRQUEAgGcnJwQGRmp1D4S8qKhBy4R0gsVFRWYOXMmLl++3GUeAFG9gIAA+R0ZT0tLS0Nqaiq+/vprNVRGSN9A18wIUeCHH36AWCzGf//7X+zYsQOTJ0+mQcJzUFBQgLt376K9vR3Hjx9HeXl5t3/ZE0KeHzrrEaLAN998g/DwcGhra8PFxQURERHqLqlPqKysxIoVK9DS0oLhw4dj3759CicnEkJUjz56IIQQQohC9NEDIYQQQhSigQIhhBBCFKKBAiGEEEIUooECIYQQQhSigQIhhBBCFPr/AL3KjkTmtlbJAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAIUCAYAAAB7HQS+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADBkUlEQVR4nOz9e1hU5f4//j/RgUDEAwe1QLdyzMTEFEKFHMntIdtgaZ66QDzBVvHt9kTv2hbsDnzwsDG5aFsQI28sULexRctjGydIISGR7yCQXBsyDjoCmoKCozPz+8OL+YEybmat18QyX4/r6gpW1zx73eu+18zNmrXWbaHX6/VgjDHGGOtCr54ugDHGGGPSxRMFxhhjjBnFEwXGGGOMGcUTBcYYY4wZxRMFxhhjjBkle9R/PH/+PJ566qnfqhaT3Lp1izSvurqaNK9///6kec7OzmRZvXpJe354584d+Pj4iM6R8vil9p///Ic07+7du6R5Q4cOJcuytbUly6LGY9d0bW1tpHkVFRWkeXZ2dmRZbm5uZFnmYGz8PnKi8NRTT2HkyJHmqkmUoqIi0ry//vWvpHnBwcGkeR9++CFZlrW1NVmWOZSXl5PkSHn8Utu8eTNpnlqtJs37+OOPybKk3Kc8dk138eJF0ryoqCjSPLlcTpb11VdfkWWZg7HxK+0/LRljjDHWo3iiwBhjjDGjeKLAGGOMMaN4osAYY4wxo0RPFI4dOwYvLy+4u7sjPj5eMlnA/QsKFyxYgEWLFiEsLMzk18fFxSE/Px9ff/21YdvatWtx6NAhZGdnQ6FQYNCgQYJqCwgIwMaNG7Fx40YEBgYKyugoMjISw4YNw7hx40RnAfR9QZ1HQcptFJu1atUqKBQK7Nixw7AtLCwMiYmJSEhIQHR0NPr06dPtvLfffhuHDx9Genq6Ydvy5cuRlpaG3bt3IyEhAQ4ODibX2U7ssdqRlPuVitTbSJ2n1Woxe/ZsREZGmvzaxMREVFRU4Pvvvzdsi46ORmlpKZRKJZRKJaZOndrtPOpjqyOp9oOoiYJWq8Xq1atx9OhRlJWVITMzE2VlZT2e1dGnn36KjIyMTm9w3ZWVlYVly5Z12vb5558jODgYISEhOHXqFFavXm1y7pAhQ+Dv74+dO3ciISEBI0eOFPUmCwChoaHIzs4WldGOui/M1bdiSLmNFFlKpRIffPBBp20lJSX4y1/+gvXr16O+vh6vv/56t/OOHDmCDRs2dNqWkZGB8PBwLFmyBGfOnMGSJUtMqvFBYo7VdlLuVypSb6M59ll6errgWwszMzMxb968h7bv2rULcrkccrkc3377bbfzqI+tdlLuB1EThbNnz8Ld3R2urq6wsrLCggULBH9YUWZRKSoqwo0bNzpt6/j8hj59+kDI4puDBg3CpUuXcPfuXeh0OlRVVWH06NGiag0ICIC9vb2ojHbUfSHFvpVyGymyysrK0NLS0mlbSUkJdDodgPu3pJkyOS0pKcHNmzc7bbt9+7bhZ2tra0HHAjUp9ysVqbeROu/KlStQKpWYO3euoNfn5+fj+vXrgv//D6I+ttpJuR9ETRTq6uo6PUjFxcUFdXV1PZ7VzsLCAlFRUQgNDUVWVpaorI7WrVuH7777Dn/605+wc+dOk19/5coVuLq6ok+fPrC0tMSzzz6LAQMGkNUnFnVfmKNvxZJyG3+L/fXyyy+juLhYdE5ERAS++uorTJs2DampqYJzqI5VKfcrFam3kTovLi4OmzZtIn9Q3PLly5Gbm4vExETSB+QJPbak3A+/64sZU1JS8MUXX2Dnzp04cOAAzp07R5K7Y8cOTJ48GYcPH0ZoaKjJr7969SpOnTqFiIgIrFixAvX19YbZKGPmNmfOHGi1WuTm5orOSk5Oxpw5c3DixAlBp1vbmetYZY+3U6dOwd7eHt7e3qS5u3fvxrhx4zB58mSo1eqHvkoQivLYkhJREwVnZ2fU1NQYfq+trRX8qGHKrHbtFxra29tDLpfjwoULovIedOjQIUybNk3Qa8+ePYuPP/4Y//jHP9Da2orGxkbS2sSg7gtz9K1YUm6jOffXlClTMG7cONInJQLAyZMnRT3BjupYlXK/UpF6Gynzzp07h5ycHAQFBWH9+vUoKCjAxo0bBdfWrqGhATqdDnq9Hunp6XjhhRdEZ4o9tqTcD6ImCr6+vqisrER1dTU0Gg327t0r+NHFlFkA0NraarieoLW1FQUFBSTP2f7DH/5g+Hnq1KmoqqoSlNO3b18AwIABAzB69GhJ/QVF3RfUeRSk3EZz7S8fHx+EhIQgPj4eGo1GdJ6Li4vh54CAAFy6dElQDuWxKuV+pSL1NlLmbdiwAbm5ucjJyUFCQgL8/f2xfft2wbW1Gzx4sOHnWbNmiX70NsWxJeV+eORaD//1xTIZkpKSMH36dGi1WixduhSjRo3q8SwAaGpqQnR0NADg3r17mDFjBiZOnGhSRkJCAvz8/DBw4EDDd1mTJ0/GiBEjoNPpUF9fj5iYGEH1hYWFwdbWFlqtFllZWaIXRgkLC0NeXh4aGxvh5uaGd999F+Hh4YKyqPuCOo+ClNtIkbVu3TqMGjUKdnZ2SE5Oxr59+/Daa6/B0tIS7733HoD7F10lJyd3Ky82NhY+Pj4YMGAAsrKykJqaigkTJmDYsGHQ6XRQq9XYtm2byW0FaI7VdlLuVypSb6PU9llycjImTZoEBwcHqFQqxMfHIyAgAN7e3tDr9fjll18euqPnUaiPrXZS7gcL/SMuVS4vL5fswiTUi0ItWrSINI8XhRKOatxJefxSmzNnDmmelBeFGj9+PFkWNR67pqNeFGrChAmkeU/aolBdjbvf9cWMjDHGGBOHJwqMMcYYM4onCowxxhgziicKjDHGGDOKJwqMMcYYM0rU7ZE9ifouhcrKStI8ymeLA4CNjQ1ZVmFhIVkWIO2r0J8U1I8Ap3zkOQAcP36cLIvHW8+ifoS1l5cXaR7VmjftVCoVad7jiM8oMMYYY8wonigwxhhjzCieKDDGGGPMKJ4oMMYYY8wonigwxhhjzCjRE4Vjx47By8sL7u7uiI+P79GsuLg45Ofn4+uvvzZsW7t2LQ4dOoTs7GwoFArDcrbdkZqaCrVa3emq15iYGNTW1qK4uBjFxcWYOXNmt/OWLFmCHTt24P333zdss7W1xfr16xEXF4f169ejT58+PVLbg4KDg7FgwQIsWrQIYWFhgnPaUY4TKtQ1SelY6GqsjR8/Hu+//z5SUlI6rYLaHV2NNwCIiopCeXk5SktLsWXLFpPrBO6vcrdixQpERETA19dXUEZHUu5XKlJuY1tbG2bNmoU//vGPCAoKErTaI+V4S0xMREVFBb7//nvDtujoaJSWlkKpVEKpVGLq1Kndrq2rz5l2S5cuxcWLFzFw4MBu53Uk1X4VNVHQarVYvXo1jh49irKyMmRmZqKsrKzHsrKysrBs2bJO2z7//HMEBwcjJCQEp06dwurVq7udl5aWhhkzZjy0fceOHRg7dizGjh2Lo0ePdjvv9OnT2LFjR6dtM2fORHl5Od555x2Ul5fjlVde6ZHauvLpp58iIyMD6enponIoxwkV6pqkdix0Ndbq6urwySefCFqEp6vxJpfLERISgjFjxsDb21vQB4KTkxN8fHywe/dupKSkwMPDQ/CbLCDtfqUi9TY+9dRT2L9/P06ePInjx49DqVTixx9/NCmDcrxlZmZi3rx5D23ftWsX5HI55HI5vv32227X1tXnDAAMGTIEkyZNEnz7qJT7VdRE4ezZs3B3d4erqyusrKywYMECZGdn91hWUVERbty40Wlb+zr3ANCnTx88YrHMh+Tl5eHatWsm1fAoFy9e7FQPAIwdOxZnzpwBAJw5cwZjx47tkdrMiXKcSLUmqR0LXY21y5cvC14VsqvxtnLlSsTHx0Oj0QAAGhoaTM51cHBAfX097t27Z1jyV8x99VLuVypSb6OFhQVsbW0B3F82/N69e7CwsDApg3K85efnkz7XpqvPGQB45513sG3bNpM+YzqScr+KmijU1dVh6NChht9dXFwEz6Yosx60bt06fPfdd/jTn/6EnTt3is6LiopCSUkJUlNTRT/opl+/foZBd+PGDfTr108StVlYWCAqKgqhoaGiH75jzr4Virqmx+VYoOTp6YnAwEAUFBRAqVQKehBSQ0MDhg4dChsbG8hkMri5uYk6BqTcr1QehzZqtVpMmzYNY8aMQWBgIF544QVReQDNeOto+fLlyM3NRWJiIvr37y8q6+WXX4ZarUZFRYXgDCn36xNxMeOOHTswefJkHD58GKGhoaKydu3aBTc3N/j4+ODy5cv4+9//TlTlfUJnowBtbSkpKfjiiy+wc+dOHDhwAOfOnROcxX6fZDIZ7O3t4e/vj02bNmH//v0mZzQ1NSE/Px8LFy7EwoULoVarRR0DTBp69+6NEydOoLCwEOfPnxf1AdqOYry12717N8aNG4fJkydDrVbjgw8+EJxlbW2NP//5zyR/hEqVqImCs7MzampqDL/X1tbC2dm5x7OMOXToEKZNmyYq4+rVq9DpdNDr9UhJSYGfn5+ovJs3bxpms/3790dzc7Mkamu/6NPe3h5yuRwXLlwQnPVb9K2pqGt63I4FCrW1tYazTYWFhdDpdHB0dDQ5p6SkBAqFAnv27EFbW5uor9Sk3K9UHqc29u/fHxMnToRSqRSdRTXegPtnstrfK9PT00Wd8Rg2bBhcXFxw6NAh5OTkYMiQIfjXv/5lcm1S7ldREwVfX19UVlaiuroaGo0Ge/fuRXBwcI9nddTx6u6pU6eiqqpKVN6QIUMMP7/22msoLS0VlXf+/HlMnDgRADBx4kQUFxf3eG2tra2G77dbW1tRUFAANzc3wXWZq2/FoK7pcTgWqB08eBBTpkwBAHh4eMDKygqNjY0m57Tf6dOvXz94eXmJOqak3K9UpN7GpqYmw9epra2tyMvLg7u7u+C8dlTjDQAGDx5s+HnWrFkoLy8XXNfFixcxYcIEBAUFISgoCFeuXMFrr71mcm1S7ldRi0LJZDIkJSVh+vTp0Gq1WLp0KUaNGtVjWQkJCfDz88PAgQMN3z1NnjwZI0aMgE6nQ319PWJiYrqdl5GRAblcDkdHR9TU1CAmJgZyuRw+Pj7Q6/X4+eefERkZ2e28iIgIeHl5oW/fvti2bRuys7Nx5MgRrFy5EoGBgWhqasKnn37aI7V11NTUhOjoaAD3L0aaMWOGYTIjBOU4oUJdk9SOha7G2q1bt7Bo0SLY2dlh7dq1qKmpeejOCGO6Gm8KhQIKhQIqlQoajQaLFy8W0lzMmTMHNjY20Ol0OH78OO7cuSMoB5B2v1KRehvVajXWrVsHrVYLvV6PV1991aTbDwHa8ZacnIxJkybBwcEBKpUK8fHxCAgIgLe3t+EC2g0bNnS7tq4+Zw4cOGBS+7oi5X610D/iC8Hy8nKMHDlScKHm5OnpSZpHvXrk0qVLSfMUCgVZltRXj6Qad1Iev9S6ul1LDMrxBgAffvghWdZf//pXsixqT8LYpb6Y08XFhTSPevVIBwcHsiwhtyb/loyNuyfiYkbGGGOMCcMTBcYYY4wZxRMFxhhjjBnFEwXGGGOMGSXqrgdTFRUVkWVRX3z466+/kuaJfdLXgyjrO378OFkWQH8x45OA+oKwgwcPkuZRmzBhQk+XwIgcOnSING/SpEmkeW+++SZp3qpVq0jzHkd8RoExxhhjRvFEgTHGGGNG8USBMcYYY0bxRIExxhhjRvFEgTHGGGNGiZ4oHDt2DF5eXnB3d0d8fLyorODgYCxYsACLFi1CWFiYya9PTU2FWq2GSqUybIuJiUFtbS2Ki4tRXFyMmTNnCqqttrYWr776Kl588UX4+/tj165dgnLaid1vq1atgkKh6PSs/gkTJuDjjz/GP//5T1GLOAGAn58fIiIisGLFCsyePRu9e/cWlUc5TqhQ10SV19bWhlmzZuGPf/wjgoKCsH37dpMzEhMTUVFRge+//96wLTo6GqWlpVAqlVAqlSY9f7+rYwsAoqKiUF5ejtLSUmzZssXkOgGgpaUFsbGxCA8Px5IlS0StVApIt18pSb2Nzz//PObPn4/58+dj6tSpJr9/vP322zh8+DDS09MN25YvX460tDTs3r0bCQkJgh+tLLY2cx4LUu1XURMFrVaL1atX4+jRoygrK0NmZibKysrEROLTTz9FRkZGpwHSXWlpaZgxY8ZD23fs2IGxY8di7NixOHr0qKC6ZDIZPvzwQ/zwww84efIkPv/8c8FrrFPsN6VS+dAa6r/88gu2bt0qug/s7Ozg6+sLhUKBlJQUWFhYiFqcxBzjRCzqmijznnrqKezfvx8nT57E8ePHoVQq8eOPP5qUkZmZiXnz5j20fdeuXZDL5ZDL5fj222+7ndfVsSWXyxESEoIxY8bA29tb0IQGAJKSkuDr64u0tDQkJyd3WvHVVFLuVypSb6OtrS1Gjx6NAwcOYN++fbCwsDB59cgjR448tFBTRkaGYTJ55swZLFmypEdqM9exIOV+FTVROHv2LNzd3eHq6gorKyssWLAA2dnZYiJFycvLE7WW/aMMGTIEPj4+AO5/kHp6euLy5cuCsij2W1lZGVpaWjptq6urQ319vaCaHtSrVy/IZDJYWFjA0tISzc3NgrOkNk7MURNlnoWFBWxtbQHcX73z3r17sLCwMCkjPz8f169fF/T/70pXx9bKlSsRHx8PjUYDAGhoaDA5t6WlBSqVCq+88goAwNLSEn379hVcp5T7lcrj0MaO7x8ymcywbH13lZSU4ObNm5223b592/CztbU1HrGeoVlrM9exIOV+FTVRqKurw9ChQw2/u7i4iHqQjIWFBaKiohAaGoqsrCwxpXUSFRWFkpISpKamYsCAAaLzLl26BJVKhXHjxgl6PfV+o9bc3IyCggKsWbMGa9euxZ07d1BdXS04T4rtpa6JOk+r1WLatGkYM2YMAgMD8cILLwjO6mj58uWGpXHFPhTM09MTgYGBKCgogFKpFPTgrStXrqB///7YunUrIiMjsX37drS2tgquSer9SkHqbbx16xbOnz+P0NBQLF68GBqNBrW1tYLzOoqIiMBXX32FadOmITU1VTK1URwLUu5XSV3MmJKSgi+++AI7d+7EgQMHcO7cOdGZu3btgpubG3x8fHD58mX8/e9/F5XX0tKCsLAwxMXFoV+/fqLrkyJra2t4enrik08+QWJiIiwtLeHt7d3TZT1RevfujRMnTqCwsBDnz58X/DVXR7t378a4ceMwefJkqNXqh766MpVMJoO9vT38/f2xadMm7N+/3+QMrVaLyspKBAcH47PPPoO1tTX27t0rqi7Ws6ysrDBixAh88cUXSE9Ph6WlJTw8PEiyk5OTMWfOHJw4cQKvv/66ZGqjOBakTNREwdnZGTU1NYbfa2tr4ezsLDhv0KBBAO6vJy6Xy0Vf1AQAV69ehU6ng16vR0pKCvz8/ARn3b17F2FhYXjjjTcQHBwsOId6v1EbPnw4fv31V9y+fRs6nQ4//fSTqDXjpdhe6prM1cb+/ftj4sSJUCqVorMaGhoMx0J6errosxS1tbWGM3+FhYXQ6XRwdHQ0KcPJyQlOTk4YOXIkAOCll14S9Xj2x6VfxZB6G11cXHDz5k20tbVBp9OhqqoKQ4YMEZzXlZMnT0Iul0umNopjQcr9Kmqi4Ovri8rKSlRXV0Oj0WDv3r2CP0BbW1sN3xW1traioKBA9JX7ADoNgtdeew2lpaWCcvR6PaKiouDp6YmoqChRNVHuN3O4efMmnJ2dIZPdXwpk+PDhaGxsFJwnxfZS10SZ19TUhBs3bgC4fyzk5eWZfMFVVwYPHmz4edasWSgvLxeVd/DgQUyZMgUA4OHhASsrK5PHib29PZycnAxvaMXFxaIuZpRyv1KRehtbWlowePBgw/uHi4sLyfUyHf9YCQgIwKVLlyRTG8WxIOV+FbUolEwmQ1JSEqZPnw6tVoulS5cKvjq+qakJ0dHRAO5fwDVjxgxMnDjRpIyMjAzI5XI4OjqipqYGMTExkMvl8PHxgV6vx88//4zIyEhB9RUUFGDfvn147rnnEBAQAAB47733MG3aNJOzKPbbunXrMGrUKNjZ2SE5ORn79u1Dc3Mzli9fjn79+uGdd97Bzz//LOj0cn19PSoqKrBs2TLodDqo1WoUFxebnNOOcpxQoa6JMk+tVmPdunXQarXQ6/V49dVXTbqVEbh/inbSpElwcHCASqVCfHw8AgIC4O3tDb1ej19++eWhq8ofpatjS6FQQKFQQKVSQaPRYPHixaY2FQCwZs0axMXF4e7du3j66acN7wNCSLlfqUi9jVevXkVVVRXmzp0LvV6PhoYGk6+2j42NhY+PDwYMGICsrCykpqZiwoQJGDZsmOE9adu2bT1Sm7mOBSn3q4X+EZeOlpeXG04JUqBcPdLX15csC5D+6pFz5swhy6K6MK7dX//6V9I8qnFHPX4pUV8Q9/zzz5PmUd899O9//5ssKygoiCyL2pMwdsU+Q+ZBX375JWmelFePFHqnxm/F2LiT1MWMjDHGGJMWnigwxhhjzCieKDDGGGPMKJ4oMMYYY8wonigwxhhjzChRt0eaivJJhpMmTSLLAujvUqBGfacCM137sw0oSP0uBWpCH3fOpEfIYkyP4uXlRZr3xhtvkOYtXbqUNO9xxGcUGGOMMWYUTxQYY4wxZhRPFBhjjDFmFE8UGGOMMWYUTxQYY4wxZpToicKxY8fg5eUFd3d3xMfHiy5Iq9Vi9uzZghZvevvtt3H48GGkp6cbtq1atQpffvkl0tLSEBcXh759+wqujbKt1PvNz88PERERWLFiBWbPno3evXtLKo+6vRQoa6qtrcWrr76KF198Ef7+/oKeh5+YmIiKigp8//33hm3R0dEoLS2FUqmEUqns9uJQqampUKvVUKlUnbZHRUWhvLwcpaWl2LJlS7dro85rR7HfHkQ91n7vY5c6LzIyEsOGDSO706WlpQWxsbEIDw/HkiVLcOHCBZNeT3lcAffv+tixYwfef/99w7bx48fj/fffR0pKiqjVT6Xar6ImClqtFqtXr8bRo0dRVlaGzMxMk1fielB6errg5aWPHDny0Ip4hYWFCAsLQ3h4OGpqahAaGioom7Kt1PvNzs4Ovr6+UCgUSElJgYWFhahVx6jzzDFOxKKuSSaT4cMPP8QPP/yAkydP4vPPP0dFRYVJGZmZmZg3b95D23ft2gW5XA65XI5vv/22W1lpaWmYMWNGp21yuRwhISEYM2YMvL29sX379m7XRp3XjmK/dUTdr0/C2KXOCw0NRXZ2tuDXPygpKQm+vr5IS0tDcnKyyR/ElMcVAJw+fRo7duzotK2urg6ffPIJLl68aFJtHUm5X0VNFM6ePQt3d3e4urrCysoKCxYsEDVArly5AqVSiblz5wp6fUlJCW7evNlpW2FhIbRaLQDgwoULcHJyEpRN2Vbq/QYAvXr1gkwmg4WFBSwtLdHc3CyZPHO0VyzqmoYMGQIfHx8A9ydanp6euHz5skkZ+fn5uH79uuAaOsrLy3vo2QorV65EfHw8NBoNAKChoaHH8tpR7LeOqPv1SRi71HkBAQGwt7cX/PqOWlpaoFKp8MorrwAALC0tTT4rTHlcAcDFixdx69atTtsuX74MtVotKlfK/SpqolBXV4ehQ4cafndxcRG1fG5cXBw2bdqEXr3Mc+nErFmzUFBQIOi1lG2l3m/Nzc0oKCjAmjVrsHbtWty5cwfV1dWSyaNuLwVz1nTp0iWoVCqyU6/Lly9Hbm4uEhMTRT0YzNPTE4GBgSgoKIBSqcT48eNF1UWdR7HfqPv1SRi7UmxjuytXrqB///7YunUrIiMjsX37drS2tpJkUx1XVKTcr5K5mPHUqVOwt7eHt7e3WfLDwsKg1Wpx4sQJs+T3JGtra3h6euKTTz5BYmIiLC0tRe1H6rwnSUtLC8LCwhAXF0fyJNLdu3dj3LhxmDx5MtRqNT744APBWTKZDPb29vD398emTZuwf/9+UbVR5lHvN/b7oNVqUVlZieDgYHz22WewtrbG3r17RedSHldPAlETBWdnZ9TU1Bh+r62thbOzs6Csc+fOIScnB0FBQVi/fj0KCgqwceNGMeUZzJw5ExMnTsTf/vY3wRmUbaXMAoDhw4fj119/xe3bt6HT6fDTTz/BxcVFMnnU7aVgjpru3r2LsLAwvPHGGwgODhZbIoD7p/N1Oh30ej3S09NFPcq7trYWWVlZAO5/JafT6eDo6NjjeZT7jbpfn4SxK8U2tnNycoKTkxNGjhwJAHjppZdQWVkpOpfyuKIi5X4VNVHw9fVFZWUlqqurodFosHfvXsEH+oYNG5Cbm4ucnBwkJCTA399f0MVRD3rxxRexaNEi/O///i/u3LkjOIeyrZRZAHDz5k04OztDJru/dMfw4cPR2NgomTzq9lKgrkmv1yMqKgqenp6Iiooiq3Pw4MGGn2fNmoXy8nLBWQcPHsSUKVMAAB4eHrCyshLVrxR51PuNul+fhLErxTa2s7e3h5OTk+EDr7i4WNRdBe0ojysqUu5XUYtCyWQyJCUlYfr06dBqtVi6dKmoq+PFio2NhY+PDwYMGICsrCykpqYiNDQUlpaWhqtUL1y4IPjqbKq2Uu+3+vp6VFRUYNmyZdDpdFCr1SguLpZMntTGiTlqKigowL59+/Dcc88hICAAAPDee+9h2rRp3c5ITk7GpEmT4ODgAJVKhfj4eAQEBMDb2xt6vR6//PLLQ3f1GJORkQG5XA5HR0fU1NQgJiYGCoUCCoUCKpUKGo0Gixcv7nZt1HntKPZbR9T9+iSMXeq8sLAw5OXlobGxEW5ubnj33XcRHh4uOG/NmjWIi4vD3bt38fTTTyM6Otqk11MeVwAQEREBLy8v9O3bF9u2bUN2djZu3bqFRYsWwc7ODmvXrkVNTc1Dd0b8N1LuVwu9Xq839h/Ly8sNp3woiLl15EHUK3p1vMdWij766KOeLsGov/71r6R5VOOOevxSrh7p6upKlgVIf/XIX3/9lSxLCheeGSPVsUupra2NNO/MmTOkedSrR86ePZssKzU1lSzLHIyNO8lczMgYY4wx6eGJAmOMMcaM4okCY4wxxoziiQJjjDHGjOKJAmOMMcaMEnV7ZE+aOXNmT5fwm6J8VvnAgQPJsp4klFfbUz8i18bGhjSPWktLC1mWlO96kCrKOxV2795NlgUA//nPf0jzqH3yySc9XUKP4zMKjDHGGDOKJwqMMcYYM4onCowxxhgziicKjDHGGDOKJwqMMcYYM0r0ROHYsWPw8vKCu7s74uPjRRek1Woxe/ZsREZGis7y8/NDREQEVqxYgdmzZ6N3796i8ijbSr3fAgICsHHjRmzcuBGBgYGi86S876hQ10SZFxkZiWHDhmHcuHGCXp+amgq1Wg2VStVpe1RUFMrLy1FaWootW7b0WF5HbW1tmDVrFv74xz8iKChI9KqxUu5XKlIaa115/vnnMX/+fMyfPx9Tp041+f1j3rx5iI2NxcaNGw3bbGxsEBERgbfeegsRERHdvtMnMTERFRUVndbziY6ORmlpKZRKJZRKJaZOnWpSfe2o951Ux66oiYJWq8Xq1atx9OhRlJWVITMzE2VlZWIikZ6eDjc3N1EZAGBnZwdfX18oFAqkpKTAwsJC1EpclG2l3m9DhgyBv78/du7ciYSEBIwcORIODg6C86S876hQ10SdFxoaiuzsbMGvT0tLw4wZMzptk8vlCAkJwZgxY+Dt7W3SBzJ1XkdPPfUU9u/fj5MnT+L48eNQKpX48ccfBWVJvV8pSG2sPcjW1hajR4/GgQMHsG/fPlhYWMDd3d2kjKKiIqSkpHTaFhQUhMrKSmzZsgWVlZUICgrqVlZmZibmzZv30PZdu3ZBLpdDLpfj22+/Nam+dpT7TspjV9RE4ezZs3B3d4erqyusrKywYMECUTvtypUrUCqVmDt3rpiyDHr16gWZTAYLCwtYWlqiublZcBZlW6n326BBg3Dp0iXcvXsXOp0OVVVVGD16tOA8QLr7jgp1TdR5AQEBsLe3F/z6vLy8h1aUXLlyJeLj46HRaAAADQ0NPZbXkYWFBWxtbQEA9+7dw71792BhYSEoS+r9SkFqY60rHd8/ZDIZbt26ZdLrq6qqcPv27U7bRo0ahaKiIgD3JxLd/eMlPz+f9Dk0HVHuOymPXVEThbq6OgwdOtTwu4uLi6gHycTFxWHTpk3o1Uv8pRPNzc0oKCjAmjVrsHbtWty5cwfV1dWC8yjbSr3frly5AldXV/Tp0weWlpZ49tlnMWDAAMF5Ut53VKhrkmIbH+Tp6YnAwEAUFBRAqVRi/PjxksnTarWYNm0axowZg8DAQLzwwguCcp6EfpViTR3dunUL58+fR2hoKBYvXgyNRoPa2lrRuXZ2doY/WJqbm2FnZycqb/ny5cjNzUViYqIkHuIl5bErmYsZT506BXt7e3h7e5PkWVtbw9PTE5988gkSExNhaWlJli01V69exalTpwzXFNTX10On0wnOe5L23ZNEJpPB3t4e/v7+2LRpE/bv3y+ZvN69e+PEiRMoLCzE+fPnUVFRIao21nOsrKwwYsQIfPHFF0hPT4elpSU8PDzI/z96vV7wa3fv3o1x48Zh8uTJUKvV+OCDDwgr+/0RNVFwdnZGTU2N4ffa2lo4OzsLyjp37hxycnIQFBSE9evXo6CgoNOFLKYaPnw4fv31V9y+fRs6nQ4//fQTXFxcBOdRtpUyq93Zs2fx8ccf4x//+AdaW1vR2NgoOEvK+44KdU1SbOODamtrkZWVBQAoLCyETqeDo6OjZPKA+49nnjhxIpRKpaDXPwn9KsWaOnJxccHNmzfR1tZm+Cp0yJAhonM7nkWws7MT9VjwhoYG6HQ66PV6pKenCz6DRUnKY1fURMHX1xeVlZWorq6GRqPB3r17ERwcLChrw4YNyM3NRU5ODhISEuDv7y/q6uebN2/C2dkZMtn95SyGDx8u6sOTsq2UWe369u0LABgwYABGjx6Nc+fOCc6S8r6jQl2TFNv4oIMHD2LKlCkAAA8PD1hZWYnqV6q8pqYm3LhxAwDQ2tqKvLw8ky9+a/ck9KsUa+qopaUFgwcPNrx/uLi4kFwjUFZWZvh6a/z48bhw4YLgrMGDBxt+njVrFsrLy0XXJ5aUx66oRaFkMhmSkpIwffp0aLVaLF26VNTV8ZTq6+tRUVGBZcuWQafTQa1Wo7i4WHAeZVvNsd/CwsJga2sLrVaLrKwsUYvASHnfUaGuiTovLCwMeXl5aGxshJubG959912Eh4d3+/UZGRmQy+VwdHRETU0NYmJioFAooFAooFKpoNFosHjx4h7L60itVmPdunXQarXQ6/V49dVXBd+uJvV+pSC1sfagq1evoqqqCnPnzoVer0dDQ4PJV9u/+eabcHNzg62tLTZv3owTJ04gJycHoaGh8PPzw/Xr17Fnz55uZSUnJ2PSpElwcHCASqVCfHw8AgIC4O3tDb1ej19++QUbNmwQ0lTSfSflsWuhf8QXPeXl5Rg5cqTgQh908eJFsqx//vOfZFkA8Ne//pU0j5qYr2EeRL16JPW+oxp31OOXEuVqfoD0V4+kuJitnZROsz9IqmP3SVo9kro+ygtFra2tybLMwdi4k8zFjIwxxhiTHp4oMMYYY8wonigwxhhjzCieKDDGGGPMKJ4oMMYYY8woUbdH9iQxzwn4LVBf1V5QUECW9T//8z9kWYx1x08//USWJeW7HqTq73//O1nW5s2bybLMobCwkDRP6ncq/Bb4jAJjjDHGjOKJAmOMMcaM4okCY4wxxoziiQJjjDHGjOKJAmOMMcaMEj1ROHbsGLy8vODu7o74+HjRBWm1WsyePRuRkZEmv3bVqlVQKBTYsWOHYduECRPw8ccf45///Cfc3NxE1UbZ1sjISAwbNgzjxo0T9Pq3334bhw8fRnp6umHbqlWr8OWXXyItLQ1xcXGGFSVNVV9fj+joaMM/4eHh+OabbwRltaMeJxSoa5LS+EhNTYVarYZKpeq0PSoqCuXl5SgtLcWWLVt6LK+jlpYWxMbGIjw8HEuWLBG1KiAg7X6lQl2Tr68vVqxYgYiICPj6+pr8+sdpvAUHB2PBggVYtGgRwsLCBGV0RNkXUh27oiYKWq0Wq1evxtGjR1FWVobMzEyTVwl7UHp6uuAPdKVSiQ8++KDTtl9++QVbt24VXRd1W0NDQ5GdnS349UeOHHloxbPCwkKEhYUhPDwcNTU1CA0NFZT9zDPPYOvWrdi6dSvi4+NhZWUFPz8/wbWaY5yIRV2T1MZHWloaZsyY0WmbXC5HSEgIxowZA29vb5OWcafO6ygpKQm+vr5IS0tDcnIy/vCHPwjKAaTfrxSoa3JycoKPjw92796NlJQUeHh4mLxw3OM03gDg008/RUZGRqc/tISg7Aspj11RE4WzZ8/C3d0drq6usLKywoIFC0S9uV25cgVKpRJz584V9PqysjK0tLR02lZXV4f6+nrBNbWjbmtAQADs7e0Fv76kpAQ3b97stK2wsBBarRYAcOHCBTg5OQnOb6dSqTB48GBRWdT7jgJ1TVIbH3l5ebh27VqnbStXrkR8fDw0Gg0AoKGhocfy2rW0tEClUuGVV14BAFhaWgo+EwZIv18pUNfk4OCA+vp63Lt3z7DsspeXl0kZj8t4o0bZF1Ieu6ImCnV1dRg6dKjhdxcXF1FLcsbFxWHTpk3o1Ut6l05Qt9XcZs2aRfKQpjNnzmDSpEmiMqS476hrkmIbH+Tp6YnAwEAUFBRAqVRi/PjxPZ535coV9O/fH1u3bkVkZCS2b9+O1tZWwTU9Cf1KXVNDQwOGDh0KGxsbyGQyuLm5oV+/fqLrlOJ4AwALCwtERUUhNDQUWVlZomqi7Aspj13JPJnx1KlTsLe3h7e3N3744YeeLuexFhYWBq1WixMnTojKuXfvHn788UcsXLiQqDLWk2QyGezt7eHv7w9fX1/s378frq6uPZqn1WpRWVmJNWvWYOTIkUhKSsLevXuxZMkSwXUx0zQ1NSE/Px8LFy7E3bt3oVarodfrRedKcbwBQEpKCgYNGoRr164hKioKw4cPxwsvvCC4rieBqD/dnZ2dUVNTY/i9trZW8ONVz507h5ycHAQFBWH9+vUoKCjAxo0bxZRHirKt5jRz5kxMnDgRf/vb30RnFRcXY8SIERgwYICoHCnuO+qapNjGB9XW1hr+giosLIROp4Ojo2OP5jk5OcHJyQkjR44EALz00kuorKwUXNOT0K/mqKmkpAQKhQJ79uxBW1vbQ6f9hZDieAOAQYMGAQDs7e0hl8tFXTxL2RdSHruiJgq+vr6orKxEdXU1NBoN9u7di+DgYEFZGzZsQG5uLnJycpCQkAB/f39RF6tQo2yrubz44otYtGgR/vd//xd37twRnXf69GlMnDhRdI4U9x11TVJs44MOHjyIKVOmAAA8PDxgZWWFxsbGHs2zt7eHk5OT4Q2tuLhY1MWMT0K/mqOmPn36AAD69esHLy8vlJaWiq5TiuOttbUVt27dMvxcUFAg6m44yr6Q8tgV9dWDTCZDUlISpk+fDq1Wi6VLl2LUqFFiIkVZt24dRo0aBTs7OyQnJ2Pfvn1obm7G8uXL0a9fP7zzzjv4+eefH7ozojuo2xoWFoa8vDw0NjbCzc0N7777LsLDw7v9+tjYWPj4+GDAgAHIyspCamoqQkNDYWlpabg99MKFC4InW21tbVCpVIiIiBD0+o6kNk7MUZPUxkdGRgbkcjkcHR1RU1ODmJgYKBQKKBQKqFQqaDQaLF68uMfyOlqzZg3i4uJw9+5dPP3004iOjhaUA0i/XymYo6Y5c+bAxsYGOp0Ox48fN/kPjcdlvDU1NRnG17179zBjxgxRfwxR9oWUx66F/hFfRpWXlxtOCVK4ePEiWdbbb79NlgUAX331FWke9eqRU6dOJcuiXj1y3rx5pHlU4456/FKiHh82NjakedT+/e9/k2UFBQWRZVGT6tj96KOPyLKetNUjxV6E+TgxNu6kd3sBY4wxxiSDJwqMMcYYM4onCowxxhgziicKjDHGGDPqN33g0uDBg8mylEolWRYAFBUVkebt2rWLNI8S9cWHjDFpM+WOmf/m6NGjZFnA/duwKQlZ1OpRli5dSpb11ltvkWUB959W+VvgMwqMMcYYM4onCowxxhgziicKjDHGGDOKJwqMMcYYM4onCowxxhgzSvRE4dixY/Dy8oK7uzvi4+MF59TW1uLVV1/Fiy++CH9/f0F3DSQmJqKiogLff//9Q/9t1apVaGpqgr29veAag4ODsWDBAixatAhhYWEmv37JkiXYsWMH3n//fcM2W1tbrF+/HnFxcVi/fr1hcZb/5u2338bhw4eRnp5u2LZq1Sp8+eWXSEtLQ1xcHPr27Wtyje2o+tVceRSk3MbIyEgMGzYM48aNE/T61NRUqNVqqFSqTtujoqJQXl6O0tJSbNmypcfyOmppaUFsbCzCw8OxZMkSUav5AdLuVyqUNbW1tWHWrFn44x//iKCgIEHrw3T1frR8+XKkpaVh9+7dSEhIgIODQ7fzKMcb9djt6n18/PjxeP/995GSkiJqUTPg/tLrs2fPRmRkpKgcgG6ciJooaLVarF69GkePHkVZWRkyMzNRVlYmKEsmk+HDDz/EDz/8gJMnT+Lzzz9HRUWFSRmZmZld3vr3zDPPYMqUKZ2W3BTq008/RUZGRqcDortOnz5tWLCp3cyZM1FeXo533nkH5eXleOWVV7qVdeTIEWzYsKHTtsLCQoSFhSE8PBw1NTUIDQ01uUaAtl/NkUdB6m0MDQ1Fdna24NenpaVhxowZnbbJ5XKEhIRgzJgx8Pb2NukDgTqvo6SkJPj6+iItLQ3Jycmi3mil3q8UqGt66qmnsH//fpw8eRLHjx+HUqnEjz/+aFJGV+9HGRkZhsnfmTNnsGTJkm7nUY436rHb1ft4XV0dPvnkE5L1jNLT00WtaNmOcpyImiicPXsW7u7ucHV1hZWVFRYsWCD4zW3IkCHw8fEBANjZ2cHT0xOXL182KSM/Px/Xr19/aPtHH32E2NhYPGL9q9/ExYsXDUucths7dizOnDkDADhz5gzGjh3braySkhLcvHmz07bCwkJotVoA91eOdHJyElQnZb+aI4+C1NsYEBAg6uxXXl4erl271mnbypUrER8fD41GAwBoaGjosbx2LS0tUKlUhgmypaWlqDNhUu9XCtQ1WVhYwNbWFsD9FRXv3bsHCwsLkzK6ej+6ffu24Wdra2uT3n8pxxv12O3qffzy5ctQq9XdzjDmypUrUCqVmDt3rugsynEiaqJQV1eHoUOHGn53cXFBXV2dmEgAwKVLl6BSqQSfdu1o5syZuHz5sujTmcD9AyoqKgqhoaHIysoSnQfcX//9xo0bAIAbN26gX79+JLmzZs1CQUGBoNdS96u5xokYT0IbH+Tp6YnAwEAUFBRAqVSKXhWPIu/KlSvo378/tm7disjISGzfvh2tra2Ca3oS+tUcNWm1WkybNg1jxoxBYGAgXnjhBbFlAgAiIiLw1VdfYdq0aUhNTRWVRTl+qY8FKnFxcdi0aRN69RJ/+SDlOJHcxYwtLS0ICwtDXFyc6A9NGxsbrFu3Dv/v//0/ktpSUlLwxRdfYOfOnThw4ADOnTtHktsRxVmPsLAwaLVanDhxgqAi9nshk8lgb28Pf39/bNq0Cfv37+/xPK1Wi8rKSgQHB+Ozzz6DtbU19u7dK6ouZrrevXvjxIkTKCwsxPnz503+2teY5ORkzJkzBydOnMDrr78uKoty/FIfCxROnToFe3t7eHt793QpDxE1UXB2du70vX9tbS2cnZ0F5929exdhYWF44403EBwcLKY0AMDw4cMxbNgw5Obmori4GM888wxOnTqFQYMGCcprf529vT3kcjnJWYqbN2+if//+AID+/fujublZVN7MmTMxceJE/O1vfxOcQd2v1HkUnoQ2Pqi2ttZwJqywsBA6nQ6Ojo49mufk5AQnJyeMHDkSAPDSSy+hsrJScE1PQr+as6b+/ftj4sSJ5I/IP3nyJORyuagMyvFLfSxQOHfuHHJychAUFIT169ejoKAAGzduFJxHOU5ETRR8fX1RWVmJ6upqaDQa7N27V/AHvF6vR1RUFDw9PREVFSWmLIPy8nI8++yzGDt2LMaOHYv6+npMmTIFV69eNTmrtbXV8L1Ua2srCgoKSC44OX/+PCZOnAgAmDhxIoqLiwVnvfjii1i0aBH+93//F3fu3BGcQ9mv5sij8CS08UEHDx7ElClTAAAeHh6wsrJCY2Njj+bZ29vDycnJ8IZWXFws6mLGJ6FfqWtqamoyfP3Z2tqKvLw8uLu7i67TxcXF8HNAQAAuXbokKo9y/FIfCxQ2bNiA3Nxc5OTkICEhAf7+/oIvEAZox4moRaFkMhmSkpIwffp0aLVaLF26FKNGjRKUVVBQgH379uG5555DQEAAAOC9997DtGnTup2RnJyMSZMmwcHBASqVCvHx8fjyyy8F1fOgpqYmREdHA7h/wc+MGTMMH/DdFRERAS8vL/Tt2xfbtm1DdnY2jhw5gpUrVyIwMBBNTU349NNPu5UVGxsLHx8fDBgwAFlZWUhNTUVoaCgsLS0NV+ReuHBB0ECj7Fdz5FGQehvDwsKQl5eHxsZGuLm54d133zVpYZ+MjAzI5XI4OjqipqYGMTExUCgUUCgUUKlU0Gg0WLx4cY/ldbRmzRrExcXh7t27ePrppw3HmRBS71cK1DWp1WqsW7cOWq0Wer0er776KqZOnWpSRlfvRxMmTMCwYcOg0+mgVquxbdu2budRjjfqsdvV+/itW7ewaNEi2NnZYe3ataipqXnozojfGuU4sdA/4kvx8vJywylBCu2zVgqurq5kWQBw/Phx0jzq1SN/+uknsqyunjMhJVTjjnr8UmprayPNs7GxIc2j9u9//5ssKygoiCyLmlTHLuUFmPPnzyfLAuhXj6T2JK0eaWzcSe5iRsYYY4xJB08UGGOMMWYUTxQYY4wxZhRPFBhjjDFmFE8UGGOMMWaUqNsjTdX+YCEK//znP8myAGDRokWkeYGBgaR5Ur9TgZnG2tqaNI/yymwAUCgUpHlHjhwhy/Ly8iLLAtDjD1D6LVC2kfq9iPqR2O+99x5pHuWxQH233l//+lfSPGP4jAJjjDHGjOKJAmOMMcaM4okCY4wxxoziiQJjjDHGjOKJAmOMMcaMEj1ROHbsGLy8vODu7o74+HjJZAFAS0sLYmNjER4ejiVLlpi8LHRcXBzy8/Px9ddfG7atXbsWhw4dQnZ2NhQKhUlLVi9ZsgQ7duzA+++/b9hma2uL9evXIy4uDuvXr0efPn1MqrEd9b6Teh4FKbdRbFZXY238+PF4//33kZKSYvIKjampqVCr1VCpVJ22R0VFoby8HKWlpdiyZUu38+bNm4fY2NhOy+ja2NggIiICb731FiIiIgStX9HW1oZZs2bhj3/8I4KCgkStvteOx27P5VH0p9SPhY58fX2xYsUKREREwNfXV1BGR1T9IGqioNVqsXr1ahw9ehRlZWXIzMxEWVlZj2e1S0pKgq+vL9LS0pCcnGzygMjKysKyZcs6bfv8888RHByMkJAQnDp1CqtXr+523unTpx9aUWzmzJkoLy/HO++8g/Lycrzyyism1QjQ7zup51GQchspsroaa3V1dfjkk09w8eJFk2tKS0vDjBkzOm2Ty+UICQnBmDFj4O3tbdKbeFFREVJSUjptCwoKQmVlJbZs2YLKykpBiz899dRT2L9/P06ePInjx49DqVTixx9/NDmnHY/dns2j6E+pHwvtnJyc4OPjg927dyMlJQUeHh4YOHCgyTntKPtB1ETh7NmzcHd3h6urK6ysrLBgwQJkZ2f3eBZw/2yCSqUyfPBaWlqib9++JmUUFRU9tOLlrVu3DD/36dMHj1h88yEXL17s9HoAGDt2LM6cOQMAOHPmDMaOHWtSjQD9vpN6HgUpt5Eiq6uxdvnyZajVakE15eXl4dq1a522rVy5EvHx8dBoNACAhoaGbudVVVXh9u3bnbaNGjUKRUVFAO4fe0KWxLWwsICtrS2A+8vB37t3DxYWFibntOOx27N5FP0p9WOhnYODA+rr63Hv3j3o9Xr88ssvop4ZQtkPoiYKdXV1GDp0qOF3FxcXwQ/PoMwCgCtXrqB///7YunUrIiMjsX37drS2tgrO62jdunX47rvv8Kc//Qk7d+4UldWvXz/DZOTGjRvo16+fyRnU+07qeRSk3EYp7q+ueHp6IjAwEAUFBVAqlRg/fryoPDs7OzQ3NwMAmpubYWdnJyhHq9Vi2rRpGDNmDAIDA/HCCy8IrkmKfSHlsWuOPMr+NBeKY6GhoQFDhw6FjY0NZDIZ3NzcBH0etKPsh9/txYxarRaVlZUIDg7GZ599Bmtra+zdu5cke8eOHZg8eTIOHz6M0NBQksx2ppyhYKwnyWQy2Nvbw9/fH5s2bcL+/ftJ84UeC71798aJEydQWFiI8+fPo6KigrQu9tt6HPqT4lhoampCfn4+Fi5ciIULF0KtVkvm80DURMHZ2Rk1NTWG32trawU/KpQyC7j/fY+TkxNGjhwJAHjppZdQWVkpOK8rhw4dwrRp00Rl3Lx50/Bo6/79+xv+ojIF9b6Teh4FKbdRivurK7W1tcjKygIAFBYWQqfTwdHRUXBex7MIdnZ2aGlpEVVf//79MXHiRCiVSsEZUuwLKY9dc+S1o+hPc6E6FkpKSqBQKLBnzx60tbU99BWHKSj7QdREwdfXF5WVlaiuroZGo8HevXsRHBzc41kAYG9vDycnJ8OOKi4uNvlixq50zJg6dSqqqqpE5Z0/fx4TJ04EAEycOBHFxcUmZ1DvO6nnUZByG6W4v7py8OBBTJkyBQDg4eEBKysrNDY2Cs4rKysznLIdP368yXcpAff/Kmv/Kq+1tRV5eXlwd3cXXJMU+0LKY5c6j7o/zYXqWGi/661fv37w8vJCaWmp4Joo+0HUolAymQxJSUmYPn06tFotli5dKugCJOqsdmvWrEFcXBzu3r2Lp59+GtHR0Sa9PiEhAX5+fhg4cCByc3ORmJiIyZMnY8SIEdDpdKivr0dMTEy38yIiIuDl5YW+ffti27ZtyM7OxpEjR7By5UoEBgaiqakJn376qanNJN93Us+jIOU2UmR1NdZu3bqFRYsWwc7ODmvXrkVNTc1DV4Mbk5GRAblcDkdHR9TU1CAmJgYKhQIKhQIqlQoajQaLFy/udn1vvvkm3NzcYGtri82bN+PEiRPIyclBaGgo/Pz8cP36dezZs8ekNgOAWq3GunXroNVqodfr8eqrr2Lq1Kkm57TjsduzeRT9KfVjoaM5c+bAxsYGOp0Ox48fx507dwTlALT9YKF/xJcg5eXlhlP3UpOTk0Oa9+c//5k0j3r1yNTUVNI8KaMad1Iev9QevI1XLOrVIzds2ECWtW7dOrIsgHZlRR67pnuSVo/88MMPybIA+tUjjY273+3FjIwxxhgTjycKjDHGGDOKJwqMMcYYM4onCowxxhgziicKjDHGGDPqkXc9nD9/Hk899dRvWQ9juHPnDnx8fETn8PhlvzUeu+xxZmz8PnKiwBhjjLEnG3/1wBhjjDGjeKLAGGOMMaN4osAYY4wxo3iiwBhjjDGjeKLAGGOMMaN4osAYY4wxo3iiwBhjjDGjeKLAGGOMMaN4osAYY4wxo2SP+o/FxcWwtLQk+5/17t2bLOvatWtkWQBQVVVFmmdtbU2a99xzz5Fl9eol7fkhPwbXdDqdjjTvl19+Ic0bPnw4aZ5UPQlj9z//+Q9pnpWVFWne0KFDSfOeJMbG7yMnCpaWlqQ7vX///mRZ+/fvJ8sCgLCwMNI8Dw8P0rz/7//7/8iyqCcx1MrLy0lynnrqKYwcOZIkS+ra2tpI8xISEkjzUlNTSfOk6kkYu5s3bybNGzFiBGne9u3bSfOeJMbGr7T/tGSMMcZYj+KJAmOMMcaM4okCY4wxxoziiQJjjDHGjBI1UaitrcWrr76KF198Ef7+/ti1a5eoYo4dOwYvLy+4u7sjPj5eVFZ9fT2io6MN/4SHh+Obb74xKSM1NRVqtRoqlcqwLSYmBrW1tSguLkZxcTFmzpzZ7by4uDjk5+fj66+/Nmxbu3YtDh06hOzsbCgUCgwaNMikGttFRkZi2LBhGDdunKDXP4iyL8yRR0HKbaTMohgbS5YswY4dO/D+++8bto0fPx7vv/8+UlJS8Ic//EFwtpT7wRx5FKTWxlWrVkGhUGDHjh2GbWFhYUhMTERCQgKio6PRp0+fbufNmzcPsbGx2Lhxo2GbjY0NIiIi8NZbbyEiIgI2NjYm1wlIb989DrWJmijIZDJ8+OGH+OGHH3Dy5El8/vnnqKioEJSl1WqxevVqHD16FGVlZcjMzERZWZng2p555hls3boVW7duRXx8PKysrODn52dSRlpaGmbMmPHQ9h07dmDs2LEYO3Ysjh492u28rKwsLFu2rNO2zz//HMHBwQgJCcGpU6ewevVqk2psFxoaiuzsbEGvfRB1X1DnUZByG6lroxgbp0+f7vQhAAB1dXX45JNPcPHiRcG5Uu4Hc+RRkGIblUolPvjgg07bSkpK8Je//AXr169HfX09Xn/99W7nFRUVISUlpdO2oKAgVFZWYsuWLaisrERQUJBJNQLS3HePQ22iJgpDhgwx3HNpZ2cHT09PXL58WVDW2bNn4e7uDldXV1hZWWHBggVkH3wqlQqDBw+Gk5OTSa/Ly8sjfV5DUVERbty40WnbrVu3DD/36dMHer1eUHZAQADs7e1F1deOui/M2bdSqYkyj7o2irFx8eLFTmMVAC5fvgy1Wi0qV8r9YI48ClJsY1lZGVpaWjptKykpMTzf4+LFi3BwcOh2XlVVFW7fvt1p26hRo1BUVATg/nvpqFGjTKoRkOa+exxqI7tG4dKlS1CpVIJPb9bV1XV6ZoOLiwvq6upIajtz5gwmTZpEkgUAUVFRKCkpQWpqKgYMGCA6b926dfjuu+/wpz/9CTt37hRfoEjUfWHOvhVKym2U4v4yFyn3gznyKDyObXz55ZdRXFwsKsPOzg7Nzc0AgObmZtjZ2ZmcIeV9J+XaSCYKLS0tCAsLQ1xcHPr160cRSebevXv48ccf4e/vT5K3a9cuuLm5wcfHB5cvX8bf//530Zk7duzA5MmTcfjwYYSGhhJUyRhj0jBnzhxotVrk5uaS5go9+8pMJ3qicPfuXYSFheGNN95AcHCw4BxnZ2fU1NQYfq+trYWzs7PY8lBcXIwRI0aQ/OUPAFevXoVOp4Ner0dKSorJ1z08yqFDhzBt2jSyPKGo+8JcfSuGlNsoxf1lLlLuB3PkUXic2jhlyhSMGzcOH3/8seisjmcR7OzsHvqqozukvO+kXJuoiYJer0dUVBQ8PT0RFRUlJgq+vr6orKxEdXU1NBoN9u7dK2ri0e706dOYOHGi6Jx2Q4YMMfz82muvobS0VFRex6vFp06dSr7mhBDUfWGuvhVDym2U4v4yFyn3gznyKDwubfTx8UFISAji4+Oh0WhE55WVlWH8+PEA7t9xc+HCBZMzpLzvpFzbI9d6+G8KCgqwb98+PPfccwgICAAAvPfee4L+KpbJZEhKSsL06dOh1WqxdOlSQRerdNTW1gaVSoWIiAhBr8/IyIBcLoejoyNqamoQExMDuVwOHx8f6PV6/Pzzz4iMjOx2XkJCAvz8/DBw4EDk5uYiMTERkydPxogRI6DT6VBfX4+YmBhBtYaFhSEvLw+NjY1wc3PDu+++i/DwcEFZ1H1hjr4VS8ptpK6NYmxERETAy8sLffv2xbZt25CdnY1bt25h0aJFsLOzw9q1a1FTU/PQnRH/jZT7wRx5FKTYxnXr1mHUqFGws7NDcnIy9u3bh9deew2WlpZ47733ANy/oDE5OblbeW+++Sbc3Nxga2uLzZs348SJE8jJyUFoaCj8/Pxw/fp17Nmzp0faaq48KddmoX/EFz2lpaVPzKJQ8+fPJ83jRaGEKy8vJ1kQhyrncUC9KJTQ23SNeZIWhfq9j905c+aQ5vGiUNJhbNzxkxkZY4wxZhRPFBhjjDFmFE8UGGOMMWYUTxQYY4wxZhRPFBhjjDFm1CNvj+zduzfpnQofffQRWdb//d//kWUBwL///W/SvJdffpk0T+zzGjpqvxeZ/X4cOnSINI/HCDOm42q6FLKyskjzKJ6W2xHlHWxiFlDrSXxGgTHGGGNG8USBMcYYY0bxRIExxhhjRvFEgTHGGGNGiZ4oHDt2DF5eXnB3d0d8fLyoLD8/P0RERGDFihWYPXs2evfubdLr4+LikJ+fj6+//tqwbe3atTh06BCys7OhUCgwaNAgwfW1tLQgNjYW4eHhWLJkicmLkqSmpkKtVne6GCgmJga1tbUoLi5GcXExZs6cKai24OBgLFiwAIsWLUJYWJigjI4o+9UceRSk3EbKrPr6ekRHRxv+CQ8PxzfffCMq8/nnn8f8+fMxf/58TJ061eRjtSMp94M58ihIrY1dvfe2W7p0KS5evIiBAwd2O6+r90oAiIqKQnl5OUpLS7Fly5bfPAugb2tHUuvXdqImClqtFqtXr8bRo0dRVlaGzMxMlJWVCcqys7ODr68vFAoFUlJSYGFhYfICFllZWVi2bFmnbZ9//jmCg4MREhKCU6dOiXqGfVJSEnx9fZGWlobk5OROKz92R1paGmbMmPHQ9h07dmDs2LEYO3Ysjh49Kri+Tz/9FBkZGUhPTxecAdD2qznyKEi5jdS1PfPMM9i6dSu2bt2K+Ph4WFlZiVoe3dbWFqNHj8aBAwewb98+WFhYwN3dXVCWlPvBHHkUpNjGrt57gfur7U6aNAl1dXUm5XX1XimXyxESEoIxY8bA29u722s6UGYB9G1tJ8V+bSdqonD27Fm4u7vD1dUVVlZWWLBgAbKzswXn9erVCzKZDBYWFrC0tERzc7NJry8qKsKNGzc6bbt165bh5z59+uARa2A9UktLC1QqFV555RUAgKWlJfr27WtSRl5eHq5duybo//9bou5X6jwKUm6jOfeXSqXC4MGD4eTkJCqn47Eqk8k6HWemkHI/mCOPghTb2NV7LwC888472LZtm8nvu129V65cubLTktUNDQ2/eRZA39Z2UuzXdqImCnV1dZ1Wl3RxcRE8m2pubkZBQQHWrFmDtWvX4s6dO6iurhZTnsG6devw3Xff4U9/+hN27twpKOPKlSvo378/tm7disjISGzfvh2tra0k9UVFRaGkpASpqakYMGCAoAwLCwtERUUhNDRU9H3JlP1qjjwKUm6jOffXmTNnMGnSJFEZt27dwvnz5xEaGorFixdDo9GgtrZWUJaU+8EceRQelza+/PLLUKvVqKioEJ0FAJ6enggMDERBQQGUSqWoZ31QZgE0bZVyv0rmYkZra2t4enrik08+QWJiIiwtLeHt7U2SvWPHDkyePBmHDx9GaGiooAytVovKykoEBwfjs88+g7W1Nfbu3Su6tl27dsHNzQ0+Pj64fPmy4IeFpKSk4IsvvsDOnTtx4MABnDt3TnRt7Pfl3r17+PHHH+Hv7y8qx8rKCiNGjMAXX3yB9PR0WFpaki+rzh5v1tbW+POf/yz4D7OuyGQy2Nvbw9/fH5s2bcL+/fslkWWOtkqNqImCs7MzampqDL/X1tbC2dlZUNbw4cPx66+/4vbt29DpdPjpp5/g4uIipryHHDp0CNOmTRP0WicnJzg5ORnW6n7ppZdQWVkpuqarV69Cp9NBr9cjJSVF8HfH7Rdp2tvbQy6Xm3yhZUeU/WqOPApSbqO59ldxcTFGjBgh+KxVOxcXF9y8eRNtbW3Q6XSoqqrCkCFDBGVJuR/MkUfhcWjjsGHD4OLigkOHDiEnJwdDhgzBv/71Lzg6OgrOrK2tNZwtLSwshE6nE5xHmUXVVin3q6iJgq+vLyorK1FdXQ2NRoO9e/ciODhYUNbNmzfh7OwMmez+U6WHDx+OxsZGMeUBQKcLDqdOnYqqqipBOfb29nBycjLs+OLiYpMvZuxKxzfY1157TdCjmltbWw3fEbe2tqKgoABubm6Ca6LsV3PkUZByG821v06fPo2JEyeKzmlpacHgwYMNx6qLiwuuX78uKEvK/WCOPAqPQxsvXryICRMmICgoCEFBQbhy5Qpee+01Ue/pBw8exJQpUwDcf6yylZWV4DzKLKq2SrlfH7nWw399sUyGpKQkTJ8+HVqtFkuXLjX5ToV29fX1qKiowLJly6DT6aBWq1FcXGxSRkJCAvz8/DBw4EDk5uYiMTERkydPxogRI6DT6VBfX4+YmBhB9QHAmjVrEBcXh7t37+Lpp59GdHS0Sa/PyMiAXC6Ho6MjampqEBMTA7lcDh8fH+j1evz888+IjIw0ua6mpiZDLffu3cOMGTNEfSBQ9qs58ihIuY3m2F9tbW1QqVSIiIgQlQPcPwtWVVWFuXPnQq/Xo6GhQfDV1FLuB3PkUZBiG7t67z1w4IDgmrp6r1QoFFAoFFCpVNBoNFi8ePFvngXQt7WdFPu1nYX+EZdolpeXG061U5DyolCffvopaR71olCFhYVkWVJf8Idq3FGPXykT8x1rV5qamkjzVq5cSZonVU/C2PX09CTNo/gK15yepEWhjI07yVzMyBhjjDHp4YkCY4wxxoziiQJjjDHGjOKJAmOMMcaM4okCY4wxxowSdXukqaKiosiyNmzYQJYF3F8NjxL1k+qkfqcCM01bWxtpXmJiImne+++/T5rX1bPxpaJ///49XcJjRcwKvF2hvuvB3t6eNI/yuRnUx721tTVpnjF8RoExxhhjRvFEgTHGGGNG8USBMcYYY0bxRIExxhhjRvFEgTHGGGNGiZ4oHDt2DF5eXnB3d0d8fLzgnNraWrz66qt48cUX4e/vj127domqKzIyEsOGDcO4ceMEZ8TFxSE/Px9ff/21YdvatWtx6NAhZGdnQ6FQmHQFMHVeR1T98LjkUZByG8WO37fffhuHDx9Genq6Ydvy5cuRlpaG3bt3IyEhAQ4ODoLra2lpQWxsLMLDw7FkyRLBy5pTH/fUeQCP3e6gHm+pqalQq9VQqVSdtkdFRaG8vBylpaXYsmVLt7ISExNRUVGB77//3rAtOjoapaWlUCqVUCqVmDp1ardrmzdvHmJjY7Fx40bDNhsbG0REROCtt95CREQEbGxsup3XEcXnVkdU40TUREGr1WL16tU4evQoysrKkJmZKWoVuQ8//BA//PADTp48ic8//xwVFRWCawsNDUV2drbg1wNAVlYWli1b1mnb559/juDgYISEhODUqVNYvXp1j+W1o+yHxyGPgtTbKHb8Hjly5KFbiDMyMgwf7GfOnMGSJUsE5yclJcHX1xdpaWlITk4WvOQ69XFPncdjt3uox1taWhpmzJjRaZtcLkdISAjGjBkDb29vbN++vVtZmZmZmDdv3kPbd+3aBblcDrlcjm+//bbbtRUVFSElJaXTtqCgIFRWVmLLli2orKxEUFBQt/M6ovjcakc5TkRNFM6ePQt3d3e4urrCysoKCxYsENzIIUOGwMfHBwBgZ2cHT09PXL58WXBtAQEBou+nLSoqeuj+71u3bhl+7tOnDx6x+KbZ89pR9sPjkEdB6m0UO35LSkpw8+bNTttu375t+Nna2lrQWAPun01QqVR45ZVXAACWlpbo27evoCzq4546j8du91CPt7y8PFy7dq3TtpUrVyI+Ph4ajQYA0NDQ0K2s/Px8XL9+vdv/7/+mqqqqU9sAYNSoUSgqKgJw/31e6HLOFJ9b7SjHiaiJQl1dHYYOHWr43cXFBXV1dWIiAQCXLl2CSqUiO/1Cbd26dfjuu+/wpz/9CTt37uzxPOp+kHoehSehjV2JiIjAV199hWnTpiE1NVVQxpUrV9C/f39s3boVkZGR2L59O1pbW0XXRn3cU+RJsV8fp7FLMd7aeXp6IjAwEAUFBVAqlaIfQrd8+XLk5uYiMTFR9EO37Ozs0NzcDABobm6GnZ2dqDwKlP0quYsZW1paEBYWhri4OPTr16+ny+nSjh07MHnyZBw+fBihoaGSy2PMmOTkZMyZMwcnTpzA66+/LihDq9WisrISwcHB+Oyzz2BtbY29e/eKqov6uH8c3keeBBTjrZ1MJoO9vT38/f2xadMm7N+/X3DW7t27MW7cOEyePBlqtRoffPCBqNoeJPRsnVSJmig4OzujpqbG8HttbS2cnZ0F5929exdhYWF44403SB+baS6HDh3CtGnTejyPuh+knkfhSWjjo5w8eRJyuVzQa52cnODk5ISRI0cCAF566SVRj+GlPu4p86TYr4/j2BUz3trV1tYiKysLAFBYWAidTgdHR0dBWQ0NDdDpdNDr9UhPT8cLL7wgqraOZxHs7OzQ0tIiKo8CZb+Kmij4+vqisrIS1dXV0Gg02Lt3r+ADU6/XIyoqCp6enqRrQlDreNHW1KlTUVVV1eN5lP3wOORReBLa+CAXFxfDzwEBAbh06ZKgHHt7ezg5ORnehIqLiwVfzEh93FPnSbFfH5exSzXe2h08eBBTpkwBcH8tHSsrKzQ2NgrKGjx4sOHnWbNmoby8XFRtZWVlhq9Cxo8fL/guIEqU/SpqUSiZTIakpCRMnz4dWq0WS5cuFXwRR0FBAfbt24fnnnsOAQEBAID33ntP8F/sYWFhyMvLQ2NjI9zc3PDuu+8iPDzcpIyEhAT4+flh4MCBhu+yJk+ejBEjRkCn06G+vh4xMTE9lteOsh8ehzwKUm+j2PEbGxsLHx8fDBgwAFlZWUhNTcWECRMwbNgw6HQ6qNVqbNu2TXB9a9asQVxcHO7evYunn34a0dHRgnKoj3vqPB673UM93jIyMiCXy+Ho6IiamhrExMRAoVBAoVBApVJBo9Fg8eLF3cpKTk7GpEmT4ODgAJVKhfj4eAQEBMDb2xt6vR6//PKLSYsMvvnmm3Bzc4OtrS02b96MEydOICcnB6GhofDz88P169exZ8+ebud1RPG51Y5ynFjoH/FlSnl5ueH0IgXKFeSeeuopsiyAfvVIahcvXuzpEn4zVOOOevxSol5FzpT7wLuDevVIqV6YDNCuHvkkjN32CRiV06dPk+ZRrx4p5jbiB3344YdkWQD96pHGxp3kLmZkjDHGmHTwRIExxhhjRvFEgTHGGGNG8USBMcYYY0bxRIExxhhjRom6PdJUlFcXU95BAUDUA2O6IvYpZA+ivEqe+kpZZrpDhw6R5om9D/xBQhe1Meajjz4iy6K+qp3yuQjt6xD8nnl5eZHmUd/18OAaEWL5+fmRZVG/91LfPWUMn1FgjDHGmFE8UWCMMcaYUTxRYIwxxphRPFFgjDHGmFE8UWCMMcaYUaInCseOHYOXlxfc3d0RHx8vmaza2lq8+uqrePHFF+Hv749du3aZnJGamgq1Wg2VSmXYFhMTg9raWhQXF6O4uBgzZ87sdt6qVaugUCiwY8cOw7YJEybg448/xj//+U+4ubmZXGO7yMhIDBs2jOyZ+pR9YY48ClJtY319PaKjow3/hIeH45tvvjEpIzExERUVFfj+++8N26Kjo1FaWgqlUgmlUilqfQjKfefr64sVK1YgIiICvr6+orKA++u2zJ8/H/Pnz8fUqVPRu3dvwVltbW2YNWsW/vjHPyIoKAjbt28XXR8FqY3dJUuWYMeOHZ3WCBk/fjzef/99pKSkmLy6aFfvvQAQFRWF8vJylJaWYsuWLb951oMojtWOqPuV6nNB1ERBq9Vi9erVOHr0KMrKypCZmYmysrIezwLur5z14Ycf4ocffsDJkyfx+eefo6KiwqSMtLQ0zJgx46HtO3bswNixYzF27FgcPXq023lKpRIffPBBp22//PILtm7dKqqtABAaGors7GxRGe2o+4I6j4KU2/jMM89g69at2Lp1K+Lj42FlZWXyLVqZmZmYN2/eQ9t37doFuVwOuVyOb7/9VlB9lG11cnKCj48Pdu/ejZSUFHh4eGDgwIGCsgDA1tYWo0ePxoEDB7Bv3z5YWFjA3d1dcN5TTz2F/fv34+TJkzh+/DiUSiV+/PFHwXkUpDh2T58+3ekPIACoq6vDJ598ImhBu67ee+VyOUJCQjBmzBh4e3t3e9JGmfUgimO1nTneJ6k+F0RNFM6ePQt3d3e4urrCysoKCxYsEFwUZRYADBkyBD4+PgAAOzs7eHp64vLlyyZl5OXlkd6TW1ZWhpaWlk7b6urqUF9fLzo7ICCA7P5y6r6gzqPwuLRRpVJh8ODBcHJyMul1+fn5uH79uuj/f1co2+rg4ID6+nrcu3fPsOSv2Pv0e/XqBZlMBgsLC8hkMty6dUtwloWFBWxtbQEA9+7dw71792BhYSGqPrGkOHYvXrz40H6+fPky1Gq1oJq6eu9duXIl4uPjDc+qaGho+M2zHkXosdrOHO8hVJ8LoiYKdXV1GDp0qOF3FxcX1NXV9XjWgy5dugSVSkV2Wj4qKgolJSVITU3FgAEDSDKlhLovzNm3Qj0ubTxz5gwmTZokOqfd8uXLkZubi8TERMEPQKNsa0NDA4YOHQobGxvIZDK4ubmhX79+grIA4NatWzh//jxCQ0OxePFiaDQa1NbWCs4D7v+lN23aNIwZMwaBgYF44YUXROWJ9biMXWqenp4IDAxEQUEBlEolxo8fL4msdmKPVSn3w+/+YsaWlhaEhYUhLi5O1BtQu127dsHNzQ0+Pj64fPky/v73vxNUydjD7t27hx9//BH+/v4kebt378a4ceMwefJkqNXqh74G6wlNTU3Iz8/HwoULsXDhQqjVauj1esF5VlZWGDFiBL744gukp6fD0tISHh4eomrs3bs3Tpw4gcLCQpw/f97krzAZDZlMBnt7e/j7+2PTpk3Yv3+/JLIA+mNVakRNFJydnVFTU2P4vba2Fs7Ozj2e1e7u3bsICwvDG2+8QfaY1qtXr0Kn00Gv1yMlJYX08Z5SQd0X5uhbsR6HNhYXF2PEiBFkZ60aGhoMYzc9PV3wX8bUbS0pKYFCocCePXvQ1tYm6us+FxcX3Lx5E21tbdDpdKiqqsKQIUME53XUv39/TJw4EUqlkiRPqMdh7JpDbW0tsrKyAACFhYXQ6XRwdHTs8SyA5liVcj+Imij4+vqisrIS1dXV0Gg02Lt3r+APZMosANDr9YiKioKnpyeioqIE5zyo45vOa6+9htLSUrJsqaDuC+o8Co9DG0+fPo2JEyeKyuho8ODBhp9nzZoleH0I6rb26dMHANCvXz94eXmJOqZaWlowePBgyGT3l7FxcXERda1GU1OTYV2Z1tZW5OXlibo4ksLjMHbN4eDBg5gyZQoAwMPDA1ZWVmhsbOzxLIDmWJVyP4haFEomkyEpKQnTp0+HVqvF0qVLMWrUqB7PAoCCggLs27cPzz33HAICAgAA7733HqZNm9btjIyMDMjlcjg6OqKmpgYxMTGQy+Xw8fGBXq/Hzz//jMjIyG7nrVu3DqNGjYKdnR2Sk5Oxb98+NDc3Y/ny5ejXrx/eeecd/Pzzz4JOCYeFhSEvLw+NjY1wc3PDu+++i/DwcJNzAPq+oM6jIPU2trW1QaVSISIiQtDrk5OTMWnSJDg4OEClUiE+Ph4BAQHw9vY2XDS4YcMGQdnUbZ0zZw5sbGyg0+lw/Phx3LlzR3DW1atXUVVVhblz50Kv16OhoUHUleNqtRrr1q2DVquFXq/Hq6++Kuq2UgpSHLsRERHw8vJC3759sW3bNmRnZ+PWrVtYtGgR7OzssHbtWtTU1Dx0Z4QxXb33KhQKKBQKqFQqaDQaLF68+DfP6orYY7WdOd4nqT4XLPSP+EKwvLwcI0eOFFOn2VCvHkl9USL16pFffvklWZbUV4+kGndSHr9ivxN90MqVK0nzmpqaSPOelNUjGxsbMWbMGNE5Uh67y5YtI81TKBSkedT27dtHltXVLctiUK8eWV1d3eW4+91fzMgYY4wx4XiiwBhjjDGjeKLAGGOMMaN4osAYY4wxo3iiwBhjjDGjRN0e2ZOEPn7WmNbWVtI86luoKPOELgZkjNTvoqBSVFREljV//nyyLACCb3X8rWzevJks69///jdZFgDSh9rcvHmTLEuqUlNTSfPeeust0rzz58+T5lEfq5So76Iwhs8oMMYYY8wonigwxhhjzCieKDDGGGPMKJ4oMMYYY8wo0ROFY8eOwcvLC+7u7oiPj5dMFnVeZGQkhg0bhnHjxgnOePvtt3H48GGkp6cbtq1atQpffvkl0tLSEBcXh759+/7mWQ+iaOuDqPuWAnVNwcHBWLBgARYtWoSwsDCTX5+amgq1Wg2VStVpe1RUFMrLy1FaWootW7Z0K2vevHmIjY3Fxo0bDdtsbGwQERGBt956CxEREbCxsTG5xnZi9x1lWx/U0tKC2NhYhIeHY8mSJbhw4YKgnHZPwtiVep5Wq8Xs2bNNWlunK/X19YiOjjb8Ex4ejm+++cakDHOOXYr6OqLqB1ETBa1Wi9WrV+Po0aMoKytDZmam4AVYKLPMkRcaGors7GzBrweAI0eOPHR1emFhIcLCwhAeHo6amhqEhob+5lkPomhrR9R9IeWaPv30U2RkZHSawHVXWloaZsyY0WmbXC5HSEgIxowZA29vb2zfvr1bWUVFRUhJSem0LSgoCJWVldiyZQsqKysRFBRkco0Azb6jbOuDkpKS4Ovri7S0NCQnJ+MPf/iDoBzgyRi7Us8DgPT0dLi5uYnKAIBnnnkGW7duxdatWxEfHw8rKyv4+fmZlGHOsUtRXzvKfhA1UTh79izc3d3h6uoKKysrLFiwQPAHDGWWOfICAgJEL0ZTUlLy0O1ThYWF0Gq1AIALFy7AycnpN896EEVbO6Lui99rTXl5ebh27VqnbStXrkR8fDw0Gg0AoKGhoVtZVVVVuH37dqdto0aNMtziWVRUJHhlOop9R9nWjlpaWqBSqfDKK68AACwtLQWfWQOkOU6k/l5JnXflyhUolUrMnTtXcEZXVCoVBg8ebPL7pLnGLlV97Sj7QdREoa6uDkOHDjX87uLigrq6uh7PMkfeb2HWrFkoKCiQXJZYUuwLc9RkYWGBqKgohIaGIisrS2yJAABPT08EBgaioKAASqUS48ePF5xlZ2eH5uZmAEBzczPs7OwE5ZirPynaeuXKFfTv3x9bt25FZGQktm/fLuoZKU/C2JV6XlxcHDZt2oRevWgvqTtz5gwmTZpEkkV5nLYTWx9lP/DFjBIRFhYGrVaLEydOSCqLdV9KSgq++OIL7Ny5EwcOHMC5c+dEZ8pkMtjb28Pf3x+bNm0iXZ76ESvM9wiKtmq1WlRWViI4OBifffYZrK2tsXfvXjNUy34Lp06dgr29Pby9vUlz7927hx9//BH+/v4kedTHKXV9YomaKDg7O6Ompsbwe21treCnnFFmmSPPnGbOnImJEyfib3/7m6SyqEixL8xR06BBgwAA9vb2kMvloi+ia6+r/exEYWEhdDodHB0dBWV1PItgZ2eHlpYWQTnm6k+Ktjo5OcHJyQkjR44EALz00kuorKwUXNOTMHalnHfu3Dnk5OQgKCgI69evR0FBQacLdIUqLi7GiBEjMGDAANFZAO1xSlUfZT+Imij4+vqisrIS1dXV0Gg02Lt3L4KDg3s8yxx55vLiiy9i0aJF+N///V/cuXNHMlmUpNgX1DW1trbi1q1bhp8LCgpILr46ePAgpkyZAgDw8PCAlZUVGhsbBWWVlZUZTomOHz9e8ETGXP1J0VZ7e3s4OTkZ3iCLi4tFXcz4JIxdKedt2LABubm5yMnJQUJCAvz9/QVfKNjR6dOnMXHiRNE57SiPU4CmPsp+ELXWg0wmQ1JSEqZPnw6tVoulS5cKvkCKMssceWFhYcjLy0NjYyPc3Nzw7rvvIjw83KSM2NhY+Pj4YMCAAcjKykJqaipCQ0NhaWmJHTt2ALh/EWJ3DgTKLHO0tSPqvqBAXVNTUxOio6MB3D9tOGPGDJMP9IyMDMjlcjg6OqKmpgYxMTFQKBRQKBRQqVTQaDRYvHhxt7LefPNNuLm5wdbWFps3b8aJEyeQk5OD0NBQ+Pn54fr169izZ4/J7QRo9h1lWx+0Zs0axMXF4e7du3j66acN/SLEkzB2pZ5Hra2tDSqVChEREYJeb86xS1FfO8p+sNA/4ovK8vJywym837u2tjbSPOpFoShJfVEoqnFHPX4pF4Xy9fUlywLoF4Wi+KutIwsLC7Is6kWhhN4m2hWpjl0pu3jxImmelBeF2rdvH1kWQL8olLFxxxczMsYYY8wonigwxhhjzCieKDDGGGPMKJ4oMMYYY8wonigwxhhjzCieKDDGGGPMKFHPUfg9ob7Fj/oWxNWrV5Nl/f3vfyfLAoC//vWvpHlS1a9fP7IsykW3APo+lco6IV2hfFAO+/3x8fHp6RKMEvOU0J7EZxQYY4wxZhRPFBhjjDFmFE8UGGOMMWYUTxQYY4wxZpToicKxY8fg5eUFd3d3xMfHSyZL6nmRkZEYNmwYxo0bJ+j1S5YswY4dO/D+++8bttna2mL9+vWIi4vD+vXr0adPH8H1+fn5ISIiAitWrMDs2bPRu3dvwVkAfV9QoK5Jq9Vi9uzZiIyMFPT6xMREVFRU4Pvvvzdsi46ORmlpKZRKJZRKZbfXEElNTYVarYZKpeq0PSoqCuXl5SgtLcWWLVu6Xdvbb7+Nw4cPIz093bBt+fLlSEtLw+7du5GQkAAHB4du51HX15HYY+tBT8LYlXqe2GOLMs+cY9fX1xcrVqxAREQEyXowVP0gaqKg1WqxevVqHD16FGVlZcjMzERZWVmPZz0OeaGhocjOzhb8+tOnTxtWiWw3c+ZMlJeX45133kF5eTleeeUVQdl2dnbw9fWFQqFASkoKLCwsRK3+Rr3vKJijpvT0dFFLS2dmZna5yMuuXbsgl8shl8u7fTdNWloaZsyY0WmbXC5HSEgIxowZA29vb5MWfjpy5MhDC09lZGQgPDwcS5YswZkzZ7BkyZJu51HX15HYY6ujJ2HsSj0PEH9sUeaZa+w6OTnBx8cHu3fvRkpKCjw8PDBw4EBBNQK0/SBqonD27Fm4u7vD1dUVVlZWWLBggeADlDLrccgLCAgQdYvcxYsXcevWrU7bxo4dizNnzgAAzpw5g7FjxwrO79WrF2QyGSwsLGBpaYnm5mbBWdT7jgJ1TVeuXIFSqcTcuXMFZ+Tn5+P69euCX99RXl4erl271mnbypUrER8fD41GAwBoaGjodl5JSQlu3rzZadvt27cNP1tbW+MRC9Gavb6OxB5bHT0JY1fqeRTHFmWeucaug4MD6uvrce/ePej1evzyyy/w8vISVCNA2w+iJgp1dXUYOnSo4XcXFxfU1dX1eNbjkGcO/fr1w40bNwAAN27cEHzff3NzMwoKCrBmzRqsXbsWd+7cQXV1teC6pLjvqGuKi4vDpk2b0KsX/WU/y5cvR25uLhITE9G/f3/BOZ6enggMDERBQQGUSiXGjx8vuraIiAh89dVXmDZtGlJTU0VlmaM+sZ6EsSv1POpjyxzHKsXYbWhowNChQ2FjYwOZTAY3NzdRz26h7Ae+mPF3zJS/8DqytraGp6cnPvnkEyQmJsLS0hLe3t7E1f1+nDp1Cvb29mbZR7t378a4ceMwefJkqNVqfPDBB4KzZDIZ7O3t4e/vj02bNmH//v2i60tOTsacOXNw4sQJvP7666KyzFEfe7xRH1vmOlYpxm5TUxPy8/OxcOFCLFy4EGq1WvB7ODVREwVnZ2fU1NQYfq+trYWzs3OPZz0OeeZw8+ZNw1+c/fv3F/x1wfDhw/Hrr7/i9u3b0Ol0+Omnn+Di4iK4LinuO8qazp07h5ycHAQFBWH9+vUoKCjAxo0bSepsaGiATqeDXq9Heno6XnjhBcFZtbW1yMrKAgAUFhZCp9PB0dGRpM6TJ09CLpeLyjBnfUL93seu1POojy1zHatUY7ekpAQKhQJ79uxBW1vbQ19xmIKyH0RNFHx9fVFZWYnq6mpoNBrs3bsXwcHBPZ71OOSZw/nz5w2Pt504cSKKi4sF5dy8eRPOzs6Qye4/4Xv48OFobGwUXJcU9x1lTRs2bEBubi5ycnKQkJAAf39/wRfiPWjw4MGGn2fNmoXy8nLBWQcPHsSUKVMAAB4eHrCyshLVrx0njwEBAbh06ZLgLHPUR+H3Pnalnkd9bJnrWKUau+13qvXr1w9eXl4oLS0VXBNlP4ha60EmkyEpKQnTp0+HVqvF0qVLBV8dT5n1OOSFhYUhLy8PjY2NcHNzw7vvvovw8PBuvz4iIgJeXl7o27cvtm3bhuzsbBw5cgQrV65EYGAgmpqa8Omnnwqqrb6+HhUVFVi2bBl0Oh3UarXgSQdAv+8oSLGm5ORkTJo0CQ4ODlCpVIiPj0dAQAC8vb0NFzc9eOeBMRkZGZDL5XB0dERNTQ1iYmKgUCigUCigUqmg0WiwePHibtcWGxsLHx8fDBgwAFlZWUhNTcWECRMwbNgwwxjZtm1bt/Oo6+tI7LHVkRTHidTf26S4zyiZc+zOmTMHNjY20Ol0OH78OO7cuSO4Tsp+sNA/4kuQ8vJyjBw5UnChT7K2tjbSPMpFoVxdXcmyAPpFoajGHfX4vXjxIlnWhAkTyLIAiDpF2ZVJkyaR5p0+fZosq7W1lSwLoF0QTqpjV8oojytzEHPnwYM+/PBDsizgt3vv5YsZGWOMMWYUTxQYY4wxZhRPFBhjjDFmFE8UGGOMMWYUTxQYY4wxZpSo2yN70kcffUSa98Ybb5DmPfhcfLEOHjxIlmXK4j3s/8/T05Msq6mpiSwLoD8eEhISSPO6e1tnd1DepcBMV1RURJon5jHFXXn77bdJ8yhRf878VviMAmOMMcaM4okCY4wxxoziiQJjjDHGjOKJAmOMMcaM4okCY4wxxowSPVE4duwYvLy84O7ujvj4eMlkAYCfnx8iIiKwYsUKzJ49G7179xaVp9VqMXv2bERGRoquDQCCg4OxYMECLFq0CGFhYSa9NjExERUVFfj+++8f+m+rVq1CU1MT7O3tBdcWEBCAjRs3YuPGjQgMDBSc0466bylQ1yTlY8HX1xcrVqxAREQEfH19TX59V+MtOjoapaWlUCqVUCqVmDp1arfz5s2bh9jY2E5L/NrY2CAiIgJvvfUWIiIiYGNjY3KdgLT7lYrU2yjmva0rYt57V61aBYVCgR07dhi2hYWFITExEQkJCYiOjjas2tgdqampUKvVUKlUnbZHRUWhvLwcpaWl2LJli8l1tqP8nKHqV1ETBa1Wi9WrV+Po0aMoKytDZmYmysrKejwLAOzs7ODr6wuFQoGUlBRYWFiIXsEsPT0dbm5uojIe9OmnnyIjIwPp6ekmvS4zMxPz5s17aPszzzyDKVOmdFqH3FRDhgyBv78/du7ciYSEBIwcORIODg6C86j7lgJ1TVI+FpycnODj44Pdu3cjJSUFHh4eGDhwoEkZxsbbrl27IJfLIZfL8e2333Y7r6ioCCkpKZ22BQUFobKyElu2bEFlZSWCgoJMqhGQdr9SeVzaKPS9rSti3nuVSiU++OCDTttKSkrwl7/8BevXr0d9fT1ef/31buelpaVhxowZnbbJ5XKEhIRgzJgx8Pb2FrV0NdXnDGW/ipoonD17Fu7u7nB1dYWVlRUWLFiA7OzsHs9q16tXL8hkMlhYWMDS0hLNzc2Cs65cuQKlUom5c+eKqolKfn4+rl+//tD2jz76CLGxsXjEoqD/1aBBg3Dp0iXcvXsXOp0OVVVVGD16tOA8c/StWNQ1SflYcHBwQH19Pe7du2dYrtrUFfGMjTehqqqqcPv27U7bRo0aZbhHv6ioSNDEXsr9SuVJaGNHYt97y8rK0NLS0mlbSUkJdDodgPurV5ryh1BeXt5Dq7WuXLkS8fHx0Gg0AICGhgZBtVJ+zlD2q6iJQl1dHYYOHWr43cXFBXV1dT2eBQDNzc0oKCjAmjVrsHbtWty5cwfV1dWC8+Li4rBp0yb06kV3WYeFhQWioqIQGhqKrKws0XkzZ87E5cuXceHCBVE5V65cgaurK/r06QNLS0s8++yzGDBggOA86r6lQF2TlI+FhoYGDB06FDY2NpDJZHBzcyN7yM3y5cuRm5uLxMRE9O/fX1SWnZ2dYTLf3NwMOzs7kzOk3K9UHoc2Ur63meO9t6OXX34ZxcXFojI8PT0RGBiIgoICKJVKjB8/XlAOZVsp+/WxfTLjf2NtbQ1PT0988sknaGtrw+uvvw5vb2+UlpaanHXq1CnY29vD29sbP/zwA1mNKSkpGDRoEK5du4aoqCgMHz4cL7zwgqAsGxsbrFu3DnPmzBFd19WrV3Hq1ClERERAo9Ggvr7eMPtmj5+mpibk5+dj4cKFuHv3LtRqtagzTu12796N7du3Q6/X45133sEHH3yA//mf/yGo+D6KGlnPoHpvM9d7b7s5c+ZAq9UiNzdXVI5MJoO9vT38/f3h6+uL/fv3w9XV1aQMc7dVDFETBWdn507fhdfW1sLZ2bnHswBg+PDh+PXXXw2nN3/66Se4uLgImiicO3cOOTk5yM3NxZ07d9DS0oKNGzeK+h4KuH+KHwDs7e0hl8tx4cIFwROF4cOHY9iwYYYB/8wzz+DUqVP44x//iKtXr5qcd/bsWZw9exbA/TMVN27cEFQXQN+3FKhrkvKxANw/1VpSUgLg/vepYr6Ga9fx9Gp6ejoyMzNF5bWfRWj/94Oni7tDyv1K5XFoI9V7m7neewFgypQpGDduHGJjY0Vn1dbWGs6cFBYWQqfTwdHREY2Njd3OoG4rZb+KOr/h6+uLyspKVFdXQ6PRYO/evQgODu7xLOD+WgvOzs6Qye7PhYYPH25Sp3W0YcMG5ObmIicnBwkJCfD39xc9UFtbW3Hr1i3DzwUFBaIuYCkvL8ezzz6LsWPHYuzYsaivr8eUKVMETRIAoG/fvgCAAQMGYPTo0Th37pzg2qj7lgJ1TVI+FgAYruru168fvLy8BE2YHzR48GDDz7NmzUJ5ebmovLKyMsMp2/Hjxwv6Ck3K/UpF6m2kfG8zx3svAPj4+CAkJKTTdQViHDx4EFOmTAEAeHh4wMrKyuTPG+q2UvarqDMKMpkMSUlJmD59OrRaLZYuXSr4zgLKLACor69HRUUFli1bBp1OB7VaLfp7KEpNTU2Ijo4GANy7dw8zZszAxIkTu/365ORkTJo0CQ4ODlCpVIiPj8eXX35JVl9YWBhsbW2h1WqRlZWFtrY2wVnUfUuBuiYpHwvA/VOsNjY20Ol0OH78OO7cuWPS67sabwEBAfD29jZcIGnKwk9vvvkm3NzcYGtri82bN+PEiRPIyclBaGgo/Pz8cP36dezZs8fUZkq6X6lIvY1i39uorVu3DqNGjYKdnR2Sk5Oxb98+vPbaa7C0tMR7770H4P4FjcnJyd3Ky8jIgFwuh6OjI2pqahATEwOFQgGFQgGVSgWNRoPFixebs0ndQtmvFvpHfBFYXl6OkSNHCi7UnJ601SOnT59OlkW9eiTFDL8jqnEn5fFLTeqrR1KOOerxRulJGLtP2uqRFBeat/vpp5/IsgDaFW0B4+OOn8zIGGOMMaN4osAYY4wxo3iiwBhjjDGjeKLAGGOMMaN4osAYY4wxox7bJzN6eHiQ5r366qukedSelKvGmTBRUVGkeZs3bybNi4iIIM1jPef48eM9XcIjUd6lAMCk237/G+q7FH4rfEaBMcYYY0bxRIExxhhjRvFEgTHGGGNG8USBMcYYY0aJnigcO3YMXl5ecHd3R3x8vGSy6uvrER0dbfgnPDwc33zzjUkZcXFxyM/Px9dff23YtnbtWhw6dAjZ2dlQKBSGVdJ6Iq+jgIAAbNy4ERs3bkRgYKCgjI4o+8IceRSk3EbKrNraWrz66qt48cUX4e/vj127dpmckZqaCrVaDZVK1Wl7VFQUysvLUVpaii1btgiuUavVYvbs2YiMjBSc0U7K/UpF6m309fXFihUrEBERAV9f3x7Noh678+bNQ2xsLDZu3GjYZmNjg4iICLz11luIiIiAjY2NyXUC0u1XURMFrVaL1atX4+jRoygrK0NmZibKysp6PAu4v8zy1q1bsXXrVsTHx8PKygp+fn4mZWRlZWHZsmWdtn3++ecIDg5GSEgITp06hdWrV/dYXrshQ4bA398fO3fuREJCAkaOHAkHBweTc9pR9wV1HgUpt5G6NplMhg8//BA//PADTp48ic8//xwVFRUmZaSlpWHGjBmdtsnlcoSEhGDMmDHw9vYWdTdNenq6qNVT20m5X6lIvY1OTk7w8fHB7t27kZKSAg8PDwwcOLDHsqjHblFREVJSUjptCwoKQmVlJbZs2YLKykoEBQWZVCMg7X4VNVE4e/Ys3N3d4erqCisrKyxYsADZ2dk9nvUglUqFwYMHw8nJyaTXFRUV4caNG522tS+fCtxfuvcRa2qZPa/doEGDcOnSJdy9exc6nQ5VVVUYPXq0yTntqPvCnH0rlZqkfCwMGTIEPj4+AAA7Ozt4enri8uXLJmXk5eXh2rVrnbatXLmy0zK9DQ0Nguq7cuUKlEol5s6dK+j1HUm5X6lIvY0ODg6or6/HvXv3DCuLenl59VgW9ditqqrC7du3O20bNWqUYbGsoqIiQas0SrlfRU0U6urqMHToUMPvLi4uqKur6/GsB505cwaTJk0iyQLuL1v63Xff4U9/+hN27tzZ43lXrlyBq6sr+vTpA0tLSzz77LMYMGCA4Hqo+8KcfSuUlNtozv116dIlqFQqjBs3TnSWp6cnAgMDUVBQAKVSifHjxwvKiYuLw6ZNm9Crl/hLpqTcr1Sk3saGhgYMHToUNjY2kMlkcHNzE7xCJGVWR1Rjt52dnR2am5sBAM3NzbCzszM5Q8r9+ru/mPHevXv48ccf4e/vT5a5Y8cOTJ48GYcPH0ZoaGiP5129ehWnTp1CREQEVqxYgfr6euh0OtF1sd+XlpYWhIWFIS4ujuTNViaTwd7eHv7+/ti0aRP2799vcsapU6dgb28Pb29v0fUwaWhqakJ+fj4WLlyIhQsXQq1WCzpTSp3VEcXYfRSKGqVE1ETB2dkZNTU1ht9ra2vh7Ozc41kdFRcXY8SIEaL+wjbm0KFDmDZtmiTyzp49i48//hj/+Mc/0NraisbGRsF1UPeFufpWDCm30Rz76+7duwgLC8Mbb7yB4OBgUVkd62p/Cl5hYSF0Oh0cHR1Nyjh37hxycnIQFBSE9evXo6CgoNNFYqaScr9SeRzaWFJSAoVCgT179qCtre2hU/89ldWOYux21PEsgp2dHVpaWkzOkHK/ipoo+Pr6orKyEtXV1dBoNNi7d6/gNyHKrI5Onz6NiRMnis5p94c//MHw89SpU1FVVSWJvL59+wIABgwYgNGjR+PcuXOCa6LuC3P1rRhSbiN1bXq9HlFRUfD09CR91PPBgwcxZcoUAPcfqW5lZWXyBHXDhg3Izc1FTk4OEhIS4O/vL+qiSCn3K5XHoY19+vQBAPTr1w9eXl4oLS2VRFY7irHbUVlZmeHri/Hjx+PChQsmZ0i5X0Wt9SCTyZCUlITp06dDq9Vi6dKlgi7ioM5q19bWBpVKJfg58wkJCfDz88PAgQORm5uLxMRETJ48GSNGjIBOp0N9fT1iYmJ6LK+jsLAw2NraQqvVIisrC21tbYJyAPq+MEffiiXlNlLXVlBQgH379uG5555DQEAAAOC9994z6exVRkYG5HI5HB0dUVNTg5iYGCgUCigUCqhUKmg0GixevFhwjVSk3K9UHoc2zpkzBzY2NtDpdDh+/Dju3LnTY1nUY/fNN9+Em5sbbG1tsXnzZpw4cQI5OTkIDQ2Fn58frl+/jj179pjaTEn3q4X+EV+mlJeXY+TIkYILNSfq75SoF8GhRvlXjNQXhaIad1Iev9QevJtGLOqv6n766SeyLCkvrPMkjN2PPvqop0t4JOr3cspFoR7X997f/cWMjDHGGBOOJwqMMcYYM4onCowxxhgziicKjDHGGDOKJwqMMcYYM4onCowxxhgz6pG3R54/fx5PPfXUb1kPY7hz545hESMxePyy3xqPXfY4MzZ+HzlRYIwxxtiTjb96YIwxxphRPFFgjDHGmFE8UWCMMcaYUTxRYIwxxphRPFFgjDHGmFE8UWCMMcaYUTxRYIwxxphRPFFgjDHGmFGyR/3HJ+npYP/5z39I8+7evUua9+yzz5LmSdmT8HS7a9eukeZptVrSvKamJtK8lpYWsiyZ7JFvWyZ7/vnnybLu3r37ux+7ly9fJs2jHmuDBw8mzXNwcCDL6tVL2n+bG3vvfeQR99RTT2HkyJHmqklSNm/eTJqnVqtJ877//nvSPCkrLy8nyZHy+N2/fz9pHvWb7Zdffkmad/r0abIse3t7siwAqKurI8ui+oNDymM3KyuLNO///u//SPPWrVtHmrdkyRKyLGtra7IsczD23ivt6Q1jjDHGehRPFBhjjDFmFE8UGGOMMWYUTxQYY4wxZpToicKxY8fg5eUFd3d3xMfHSyaLIm/VqlVQKBTYsWOHYVtYWBgSExORkJCA6Oho9OnTp9t5b7/9Ng4fPoz09HTDtuXLlyMtLQ27d+9GQkKC4CtspbbvzJ1HQaptrK+vR3R0tOGf8PBwfPPNN6Jqe/755zF//nzMnz8fU6dORe/evU16PfXYTU1NhVqthkql6rQ9KioK5eXlKC0txZYtW7qVlZiYiIqKik4X/EZHR6O0tBRKpRJKpRJTp07tdm0dRUZGYtiwYRg3bpyg15uLVMduO19fX6xYsQIRERHw9fU1+fVxcXHIz8/H119//dB/W7p0KS5evIiBAwcKqk3ssdAR9fiQar+KmihotVqsXr0aR48eRVlZGTIzM1FWVtbjWVR5SqUSH3zwQadtJSUl+Mtf/oL169ejvr4er7/+erfzjhw5gg0bNnTalpGRgfDwcCxZsgRnzpwRdIWtFPedOfMoSLmNzzzzDLZu3YqtW7ciPj4eVlZW8PPzE1ybra0tRo8ejQMHDmDfvn2wsLCAu7u7SRnUYzctLQ0zZszotE0ulyMkJARjxoyBt7c3tm/f3q2szMxMzJs376Htu3btglwuh1wux7ffftvt2joKDQ1Fdna2oNeai5THLgA4OTnBx8cHu3fvRkpKCjw8PEz+UM/KysKyZcse2j5kyBBMmjRJ8J0qFMdCR5TjQ8r9KmqicPbsWbi7u8PV1RVWVlZYsGCB4J1GmUWVV1ZW9tD93yUlJdDpdACAixcvmvRXVElJCW7evNlp2+3btw0/W1tbQ6/Xm1QjIM19Z848Co9LG1UqFQYPHgwnJydROb169YJMJoOFhQVkMhlu3bpl0uupx25eXt5Dz5JYuXIl4uPjodFoAAANDQ3dysrPz8f169e7/f82RUBAAPntmGJJfew6ODigvr4e9+7dg16vxy+//AIvLy+TMoqKinDjxo2Htr/zzjvYtm2boPfJdmKPhY4ox4eU+1XURKGurg5Dhw41/O7i4iJ4pkeZZY68rrz88ssoLi4WnRMREYGvvvoK06ZNQ2pqqsmvl/q++y36wlSPSxvPnDmDSZMmicq4desWzp8/j9DQUCxevBgajQa1tbWiawPEj92OPD09ERgYiIKCAiiVSowfP15U3vLly5Gbm4vExET0799fVJaUSH3sNjQ0YOjQobCxsYFMJoObmxv69esnOK/dyy+/DLVajYqKCsEZ5jwWxJJyv/LFjALNmTMHWq0Wubm5orOSk5MxZ84cnDhxwqSvMtjv27179/Djjz/C399fVI6VlRVGjBiBL774Aunp6bC0tISHhwdJjZRjVyaTwd7eHv7+/ti0aZOoh1Lt3r0b48aNw+TJk6FWqx/6CpGZT1NTE/Lz87Fw4UIsXLgQarVa1BkA4P4Zqz//+c/YuXOnqBxzHgu/Z6ImCs7OzqipqTH8XltbC2dn5x7PMkdeR1OmTMG4cePw8ccfk+S1O3nyJORyucmvk/q+M2dfCPU4tLG4uBgjRozAgAEDROW4uLjg5s2baGtrg06nQ1VVFYYMGSIq80FCx25HtbW1hqf+FRYWQqfTwdHRUVBWQ0MDdDod9Ho90tPT8cILL4iqTUoeh7FbUlIChUKBPXv2oK2tTfQjy4cNGwYXFxccOnQIOTk5GDJkCP71r3+ZPD5+i2NBKCn3q6iJgq+vLyorK1FdXQ2NRoO9e/ciODi4x7PMkdfOx8cHISEhnb5LFcPFxcXwc0BAAC5dumRyhtT3nbn6QozHoY2nT5/GxIkTRWUA99dZGDx4sGGNBBcXF5Lv9CnGbkcHDx7ElClTAAAeHh6wsrJCY2OjoKyOz/ufNWsW2WPBpeBxGLvtd4P169cPXl5eKC0tFZV38eJFTJgwAUFBQQgKCsKVK1fw2muvmTw+zHUsUJByv4paXUUmkyEpKQnTp0+HVqvF0qVLMWrUqB7Pospbt24dRo0aBTs7OyQnJ2Pfvn147bXXYGlpiffeew/A/QGcnJzcrbzY2Fj4+PhgwIAByMrKQmpqKiZMmIBhw4ZBp9NBrVZj27ZtPdLWxymPgtTb2NbWBpVKhYiICMEZ7a5evYqqqirMnTsXer0eDQ0NJl/9TD12MzIyIJfL4ejoiJqaGsTExEChUEChUEClUkGj0WDx4sXdykpOTsakSZPg4OAAlUqF+Ph4BAQEwNvb23Ax3YN3bHRXWFgY8vLy0NjYCDc3N7z77rsIDw8XlEVF6mMXuP/VrI2NDXQ6HY4fP447d+6Y9PqEhAT4+flh4MCBhutMDhw4IKomgOZY6IhyfEi5Xy30j/jyqLy8XLILk1CbM2cOaR4vCiUc1biT8vjlRaGEk/qiUBSTYCmP3Y8++og0jxeFkg5j444vZmSMMcaYUTxRYIwxxphRPFFgjDHGmFE8UWCMMcaYUTxRYIwxxphRom6P7ElFRUWkee0PeqHyj3/8gzSPsUcRuuqoMQqFgjSvu7cQd0d1dTVZFkB7JXqvXr//v73OnTvX0yU8UsfVfikIXVCsK1999RVZ1m/p9z+qGWOMMSYYTxQYY4wxZhRPFBhjjDFmFE8UGGOMMWYUTxQYY4wxZpToicKxY8fg5eUFd3d3xMfHSyYLAIKDg7FgwQIsWrQIYWFhJr8+NTUVarUaKpWq0/aoqCiUl5ejtLQUW7ZsEVTb888/j/nz52P+/PmYOnUqevfuLSinHfW+k3oeBam2sb6+HtHR0YZ/wsPD8c0330gmr51Wq8Xs2bMRGRlp8mvnzZuH2NhYbNy40bDNxsYGEREReOuttxAREQEbG5tuZa1atQoKhaLT1e5hYWFITExEQkICoqOjDasZCsFj97+j7oO4uDjk5+fj66+/fui/LV26FBcvXsTAgQN/8yzAvONNav3aTtREQavVYvXq1Th69CjKysqQmZkpeCUuyqyOPv30U2RkZCA9Pd3k16alpWHGjBmdtsnlcoSEhGDMmDHw9vbG9u3bTc61tbXF6NGjceDAAezbtw8WFhZwd3c3Oacd9b6Teh4FKbfxmWeewdatW7F161bEx8fDysoKfn5+gmujzmuXnp4ONzc3Qa8tKipCSkpKp21BQUGorKzEli1bUFlZiaCgoG5lKZVKfPDBB522lZSU4C9/+QvWr1+P+vp6vP7664Lq5LHbPdR9kJWVhWXLlj20fciQIZg0aZJJC3lRZgHmG29S7Nd2oiYKZ8+ehbu7O1xdXWFlZYUFCxYgOzu7x7Oo5OXl4dq1a522rVy5EvHx8dBoNACAhoYGQdm9evWCTCaDhYUFZDIZbt26JbhO6n0n9TwKj0sbVSoVBg8eDCcnJ9FZlHlXrlyBUqnE3LlzBb2+qqoKt2/f7rRt1KhRhuejFBUVdXsVxrKyMrS0tHTaVlJSAp1OB+D+UvBCnzPBY7d7qPugqKgIN27ceGj7O++8g23btuERix6bNQsw33iTYr+2EzVRqKurw9ChQw2/u7i4CF6ylTKrnYWFBaKiohAaGkr2QCVPT08EBgaioKAASqUS48ePNznj1q1bOH/+PEJDQ7F48WJoNBrU1tYKrol630k9j8Lj0sYzZ85g0qRJonOo8+Li4rBp0ybSBwzZ2dmhubkZANDc3Aw7OzuS3JdffhnFxcWCXstjl4aYPuiYoVarUVFRQVIPVVZX2ULaKuV+fWyfzNgdKSkpGDRoEK5du4aoqCgMHz4cL7zwgqhMmUwGe3t7+Pv7w9fXF/v374erq6tJGVZWVhgxYgS++OILaDQaTJs2DR4eHqisrBRVG/t9uXfvHn788UcsXLhQUnmnTp2Cvb09vL298cMPP5DU1hVT/9Lrypw5c6DVapGbm0tQEROCog+sra3x5z//GUuWLBFdD2XWg36v403UnwPOzs6oqakx/F5bWwtnZ+cez2o3aNAgAIC9vT3kcjkuXLggKq+9rvazE4WFhdDpdHB0dDQpw8XFBTdv3kRbWxt0Oh2qqqowZMgQwTVR7zup51F4HNpYXFyMESNGYMCAAaJyqPPOnTuHnJwcBAUFYf369SgoKOh0UaJQHc8i2NnZPXR611RTpkzBuHHj8PHHHwvO4LErDkUfAMCwYcPg4uKCQ4cOIScnB0OGDMG//vUvk997qbM6EttWKferqImCr68vKisrUV1dDY1Gg7179yI4OLjHswCgtbXV8L1/a2srCgoKBF941dHBgwcxZcoUAICHhwesrKzQ2NhoUkZLSwsGDx4Mmez+CR0XFxdcv35dcE3U+07qeRQehzaePn0aEydOFJVhjrwNGzYgNzcXOTk5SEhIgL+/v6CLeh9UVlZm+Cpv/Pjxoib2Pj4+CAkJ6XQ9kRA8doWj6gPg/vf+EyZMQFBQEIKCgnDlyhW89tprJr/3Ume1o2irlPtV1FcPMpkMSUlJmD59OrRaLZYuXdrtC5DMmQUATU1NiI6OBnD/lOuMGTNMfpPMyMiAXC6Ho6MjampqEBMTA4VCAYVCAZVKBY1Gg8WLF5tc29WrV1FVVYW5c+dCr9ejoaFB1NWt1PtO6nkUpN7GtrY2qFQqRERECM4wZ55Yb775Jtzc3GBra4vNmzfjxIkTyMnJQWhoKPz8/HD9+nXs2bOnW1nr1q3DqFGjYGdnh+TkZOzbtw+vvfYaLC0t8d577wG4/+EgZGEqHrvdQ90HCQkJ8PPzw8CBA5Gbm4vExEQcOHDA5LZRZwHmG29S7Nd2FvpHfBFYXl6OkSNHCi7UnKhXj/T19SXNo149cuXKlaR5UkY17qQ8fvfv39/TJTySj48PaZ6UV4+kXNHvSRi7c+bMIc178Dk1UjN69GiyLKmvHmls3PGTGRljjDFmFE8UGGOMMWYUTxQYY4wxZhRPFBhjjDFm1GP7wKW//OUvPV3CI3l5efV0CUzC5s2b19MlPNKuXbtI8woKCsiyvv32W7IsZjqxD6170IgRI0jzKG7V7Ujo47+7cvHiRbIs4P6Tgn8LfEaBMcYYY0bxRIExxhhjRvFEgTHGGGNG8USBMcYYY0bxRIExxhhjRomeKBw7dgxeXl5wd3dHfHx8j2a9/fbbOHz4MNLT0w3bli9fjrS0NOzevRsJCQkmXcGampoKtVr90CNGo6KiUF5ejtLSUmzZssXkOoH7C0PFxsYiPDwcS5YsEb2yJWU/PA55FKTcRinXBgDPP/885s+fj/nz52Pq1Kno3bu3Sa+nPlY7ioyMxLBhwzBu3DhBr38Qj13T+fr6YsWKFYiIiBD0ePx58+YhNja206qkNjY2iIiIwFtvvYWIiAjY2NgIqk1sWxMTE1FRUYHvv//esC06OhqlpaVQKpVQKpWYOnWqoNoAQKvVYvbs2YiMjBSc0Y6qX0VNFLRaLVavXo2jR4+irKwMmZmZghc3osg6cuQINmzY0GlbRkaG4cP4zJkzJq1BnpaWhhkzZnTaJpfLERISgjFjxsDb21vwrThJSUnw9fVFWloakpOT8Yc//EFQDkDbD49DHgUpt1HKtQGAra0tRo8ejQMHDmDfvn2wsLCAu7u7SRnUx2pHoaGhyM7OFvTaB/HYNZ2TkxN8fHywe/dupKSkwMPDAwMHDjQpo6ioCCkpKZ22BQUFobKyElu2bEFlZSWCgoJMro2irZmZmV3e3rxr1y7I5XLI5XJRt/Cmp6eTrHRM2a+iJgpnz56Fu7s7XF1dYWVlhQULFgg+QCmySkpKcPPmzU7bbt++bfjZ2toaj1gD6yF5eXm4du1ap20rV67stJRoQ0ODSTUC988mqFQqvPLKKwAAS0tL9O3b1+ScdpT98DjkUZByG6VcW7tevXpBJpPBwsICMpnMsKR7d1Efqx0FBATA3t5e0GsfxGPXdA4ODqivr8e9e/eg1+vxyy+/mPxcmaqqqk7jAQBGjRplWAywqKhI0EqIFG3Nz8/H9evXTf5/d8eVK1egVCoxd+5c0VmU/SpqolBXV4ehQ4cafndxcUFdXV2PZz0oIiICX331FaZNm4bU1FRRWZ6enggMDERBQQGUSiXGjx9vcsaVK1fQv39/bN26FZGRkdi+fTtaW1sF10S976SeR0HKbZRybQBw69YtnD9/HqGhoVi8eDE0Gg1qa2sF53VEeaxS4LFruoaGBgwdOhQ2NjaQyWRwc3NDv379BOe1s7OzQ3NzMwCgubkZdnZ2JmeYsz+XL19uWMa6f//+gjLi4uKwadMm9Ool/vJByrY+ERczJicnY86cOThx4gRef/11UVkymQz29vbw9/fHpk2bBC0XrNVqUVlZieDgYHz22WewtrbG3r17RdXF2G/FysoKI0aMwBdffIH09HRYWlrCw8ODJJvyWGU9o6mpCfn5+Vi4cCEWLlwItVot+OzQo5gjU6jdu3dj3LhxmDx5MtRqNT744AOTM06dOgV7e3t4e3uboUJxRE0UnJ2dUVNTY/i9trYWzs7OPZ5lzMmTJyGXy0Vl1NbWIisrCwBQWFgInU4HR0dHkzKcnJzg5ORkWPf7pZdeQmVlpeCaqPed1PMoSLmNUq4NuP+Xyc2bN9HW1gadToeqqioMGTJEcF5XKI5VCjx2hSkpKYFCocCePXvQ1tb20Fe4QnQ8i2BnZ4eWlhaTM8zVnw0NDdDpdNDr9UhPTxf0mOtz584hJycHQUFBWL9+PQoKCjpdzGkqyraKmij4+vqisrIS1dXV0Gg02Lt3L4KDg3s8qyMXFxfDzwEBAbh06ZKovIMHD2LKlCkAAA8PD1hZWaGxsdGkDHt7ezg5ORk6sbi4WNTFjNT7Tup5FKTcRinXBty/xmbw4MGQye4vFePi4kLynS31sUqBx64wffr0AQD069cPXl5eKC0tFZUHAGVlZYavesePHy/oTjFz9efgwYMNP8+aNQvl5eUmZ2zYsAG5ubnIyclBQkIC/P39Ra1bQdlWUYtCyWQyJCUlYfr06dBqtVi6dKmgC0yosmJjY+Hj44MBAwYgKysLqampmDBhAoYNGwadTge1Wo1t27Z1Oy8jIwNyuRyOjo6oqalBTEwMFAoFFAoFVCoVNBoNFi9ebGpTAQBr1qxBXFwc7t69i6effhrR0dGCcgDafngc8ihIuY1Srg0Arl69iqqqKsydOxd6vR4NDQ0mX01Nfax2FBYWhry8PDQ2NsLNzQ3vvvsuwsPDBWXx2BVmzpw5sLGxgU6nw/Hjx3Hnzh2TXv/mm2/Czc0Ntra22Lx5M06cOIGcnByEhobCz88P169fx549e0yui6KtycnJmDRpEhwcHKBSqRAfH4+AgAB4e3sbLt588I6enkDZrxb6R3zRU15ebjg9LjUBAQGkeadPnybN+/e//02aJ+RWoMcV1biT8viVOurVI7/88kuyLOrVI62trcmynoSx+9FHH5HmUd9BIOXVI/Pz88myAPrVI42NuyfiYkbGGGOMCcMTBcYYY4wZxRMFxhhjjBnFEwXGGGOMGcUTBcYYY4wZJer2yJ509epV0rxJkyaR5j1Jdyk8KS5evEiWRX1XDLXNmzf3dAlGnTlzhjSPj1XTCL3V1JiOz8+gUF1dTZpHedfD44rPKDDGGGPMKJ4oMMYYY8wonigwxhhjzCieKDD2/2vv3qOaOtP9gX+REEXECxdBQT3K7bRiAbmIGGpEBaewwIqKOsO1imOl09FWxs45VeuFQXGwurQ6IJdFPaDWUqinXqBHM1AFRQUMFRdUreVmBGxVEBpJ8vvDRX4gpiV7v5G0PJ+1XItsky9P8r773S/J3nkJIYRoRBMFQgghhGjEe6Jw5swZODk5wd7eHomJiQOalZCQgJKSEvzv//5vn/+LiYlBTU0NxowZ0++8Dz74ACdPnkRWVpZ628qVK5GZmYmMjAwkJydzPiOW5es2GPNYYF2TQqHAwoULsXr1at5Zr732GsLCwhAWFoZ58+bB0NBwQPP27duHmzdv4ptvvlFvi4+PR1VVFSQSCSQSCebNmzdgeT21tbVhy5YtiIqKQnR0NKdVBnsaDH2XZV5nZycCAwMxf/58+Pn5cVp7IS0tDTKZDFKptNf2uLg4VFdXo6qqCjt37uxX1ttvv4309HTs2bNHvS0iIgL79u1DcnIy4uPj1atd9gfr48zzWI4jrNqV10RBoVBg7dq1OH36NG7cuIGcnBytV5FjmZWbm4u33nqrz3Zra2vMmjULDQ0NWuWdOnWqzypg2dnZ6gHo4sWLiI6O1ioTYPu6DcY8FnRRU1ZWFuzs7HjXZmJigmnTpuHEiRM4duwYDAwMYG9vP6B5OTk5WLp0aZ/tBw8ehFgshlgs1mqxJtZ5Pe3fvx+enp7IzMxESkoKryXcB0PfZZ03dOhQHD9+HIWFhTh79iwkEgmuXr2qVUZmZiYWLFjQa5tYLEZISAhcXFzg7Ozc7wmIRCLBtm3bem2rrKzEX//6V6xfvx6NjY1YtGhRv2tjfZx5HqtxhGW78pooXL58Gfb29pgyZQqEQiGWLVuG/Pz8Acu6cuUKHj582Gf73//+dyQlJeEXFsp8ocrKSjx69KjXtidPnqh/HjZsmNaZANvXbTDmscC6pnv37kEikWDx4sVM6hsyZAgEAgEMDAwgEAjQ3t4+oHklJSVMV/ljndetra0NUqkUb7zxBgDAyMgII0aM4Jw3GPou6zwDAwOYmJgAALq6utDV1QUDAwOtMoqLi/HgwYNe29asWYPExETI5XIAQHNzc7+ybty4gba2tl7bKisroVQqATz7fhRt3hlmfZzpieU4wrJdeU0UGhoaMGHCBPVtW1tbzrMpllk9zZ07FzKZDDdv3uSd1S02Nhaff/45/P39kZaWpvXjWT/XwZbHAuuaEhISsGHDBgwZwv+0n/b2dlRUVCA8PByRkZGQy+Wor6/Xm7yeVq5ciaKiIuzbtw+jRo0a8Lx79+5h1KhR2LVrF1avXo3du3ejo6ODcz2Doe/q4jkqFAr4+/vDxcUFvr6+mD59Oq884NmSyr6+vigtLYVEIoGHhwfvTODZMaK8vJx3BovjDMtxhGW7/q5PZhw2bBj+/Oc/Y+/evUxzU1JSEBoaioKCAq3esiK/T+fPn4eZmRmcnZ2Z5AmFQkyePBlHjhxBVlYWjIyM4ODgoDd53TIyMuDu7o7Zs2dDJpP1eXt3IPIUCgVqa2sRHByMf/3rXxg2bBiOHj3Kqy6iPUNDQxQUFKCsrAwVFRVM/lATCAQwMzODt7c3NmzYgOPHj/PODA0NhUKhQFFREecMVscZ1uMIS7wmCjY2Nqirq1Pfrq+vh42NzYBndZs4cSJsbW3x5Zdf4ty5c7C2tsYXX3wBCwsLXrndCgsLIRaLtX4c6+c62PJYYFnTtWvXcO7cOfj5+WH9+vUoLS3F+++/z7k2W1tbPHr0CJ2dnVAqlbh9+zasra31Jq9bc3MzlEolVCoVsrKyeP/VyCLP0tISlpaWeOWVVwAAr7/+OmpraznX9Hvvu7rI62nUqFHw8fGBRCLhnVVfX4/c3FwAQFlZGZRKJa+xfM6cOXB3d8fHH3/Mqy5WxxnW4wjLduU1UfD09ERtbS3u3LkDuVyOo0ePIjg4eMCzutXU1GDmzJnw8/ODn58f7t27hzfffBMtLS2cM3t+L7lIJMLdu3e1zmD9XAdbHgssa3rvvfdQVFSEc+fOITk5Gd7e3pzO9O7W1tYGKysrCATPlmKxtbXl9Xk+67xuVlZW6p8DAwNRXV094HlmZmawtLRUD5Dl5eW8Tmb8vfddXeS1traqP8Pv6OhAcXExr5Nxu+Xl5WHOnDkAAAcHBwiFQs5juaurK0JCQnqd88AVq+MM63GEZbvyWhRKIBBg//79CAgIgEKhQExMDKZOnTpgWcnJyfDy8sKYMWPUn3OeOHGCUz0AsGXLFri6umL06NHIzc1FWloaZs6ciYkTJ0KpVEImkyEpKUnrXJav22DMY0Efa+p2//593L59G4sXL4ZKpUJzczOvs9BZ5KWkpGDWrFkwNzeHVCpFYmIiRCIRnJ2doVKp8MMPP/S5Quhl5vX0zjvvICEhAU+fPsW4ceMQHx/PKQfQz36i7/unTCbDunXroFAooFKpEBQUpPWlrtnZ2RCLxbCwsEBdXR02b96M9PR0pKenQyqVQi6XIzIysl9Z69atw9SpU2FqaoqUlBQcO3YMb775JoyMjLBp0yYAzw72KSkp/cpjfZzRFZbtaqD6hVM0q6ur1W/h6RtHR0emeWPHjmWa1/P6cKIdVv2Odf+l1SP1w2effcY0j+Xqkfrad1lifTIn69UjWZ839vx3OfDxou9e4IP1cVBTv/tdn8xICCGEEH5ookAIIYQQjWiiQAghhBCNaKJACCGEEI1ookAIIYQQjXhdHjmQWltbmeZNmzaNaR6Lbw3rKSAggFkWi6/aHYx6XufP15UrV5hlAc+uMWdp/fr1TPOWLFnCLIv1md5EO3zXHdG17i9lYuWnn35ilvVbHXvpHQVCCCGEaEQTBUIIIYRoRBMFQgghhGhEEwVCCCGEaEQTBUIIIYRoxHuicObMGTg5OcHe3h6JiYkDmrVv3z7cvHmz1zoL8fHxqKqqgkQigUQi0Wpxkrfffhvp6enYs2ePeltERAT27duH5ORkxMfHY/jw4VrXCQCNjY2Ij49X/4uKisJXX33FKau+vh5BQUGYMWMGvL29cfDgQU45PbFsV13kscCyJhZtEB0djT179mDr1q3qbR4eHti6dStSU1O1WgWR9b7wPE9PT6xatQqxsbHw9PTknNNNoVBg4cKFWL16Ne8s6rsDn8e3PdPS0iCTyfqssxAXF4fq6mpUVVVh586dLz3reazHXn1tV14TBYVCgbVr1+L06dO4ceMGcnJyOK9yxyIrJycHS5cu7bP94MGDEIvFEIvF+Prrr/udJ5FIsG3btl7bKisr8de//hXr169HY2Mj5wVIxo8fj127dmHXrl1ITEyEUCiEl5cXpyyBQIDt27fj0qVLKCwsxOHDh3Hz5k1OWQDbdtVFHgusa2LRBhcuXOg1KQWeLcBz4MABrRekYr0v9GRpaQlXV1dkZGQgNTUVDg4OGDNmDKesbllZWbCzs+OVAVDf1Yc8gH97ZmZmYsGCBb22icVihISEwMXFBc7Ozv1egpll1vNYjr363K68JgqXL1+Gvb09pkyZAqFQiGXLliE/P3/AskpKSvDjjz9y+v0vcuPGDbS1tfXaVllZCaVSCeDZaoLm5ua8f49UKoWVlRUsLS05Pd7a2hqurq4AAFNTUzg6OqKpqYlzPSzbVRd5LLCuiUUb1NTU9LlGvampCTKZTOt6WO8LPZmbm6OxsRFdXV3qJaGdnJw45927dw8SiQSLFy/mXRv13YHPY9GexcXFePDgQa9ta9asQWJiIuRyOQCgubn5pWc9j+XYq8/tymui0NDQgAkTJqhv29racl6ClGXW81auXKleN5zlF17MnTsX5eXlvHMuXryIWbNmMagIuHv3LqRSKdzd3TlnsG4LXbYtV7qsiUUb6AqLfaG5uRkTJkyAsbExBAIB7OzsMHLkSM41JSQkYMOGDRgyhP8pU9R3Bz6PZXv25OjoCF9fX5SWlkIikcDDw0Mvsrrx3e/1uV1/9yczZmRkwN3dHbNnz4ZMJuvzUQJXoaGhUCgUKCoq4pXT1dWFq1evwtvbm3dNbW1tiIiIQEJCAq+Bm3Cnz23Aal9obW1FSUkJli9fjuXLl0Mmk0GlUnHKOn/+PMzMzODs7Mzp8US/6LI9BQIBzMzM4O3tjQ0bNvD69luWWYB+7/cs8PoKZxsbG9TV1alv19fXw8bGZsCzeur5llJWVhZycnJ4Z86ZMwfu7u7YsmUL76zy8nJMnjwZo0eP5pXz9OlTREREYMmSJQgODuaVxbotdNW2fOiiJpZtoAss94XKykpUVlYCePZ57+PHjznlXLt2DefOnUNRURF+/vlntLW14f333+f8mTH13YHNY92ePdXX16u/nrmsrAxKpRIWFhZoaWkZ0CxW+70+tyuvdxQ8PT1RW1uLO3fuQC6X4+jRo5xfKJZZPfX8fv7AwEBUV1fzynN1dUVISEivz7f4uHDhAnx8fHhlqFQqxMXFwdHREXFxcbxrYt0WumpbPljXxLoNdIHlvtB9tc/IkSPh5OSEqqoqTjnvvfceioqKcO7cOSQnJ8Pb25vXQYX67sDmsW7PnvLy8jBnzhwAgIODA4RCIacDO8sslvu9Prcrr3cUBAIB9u/fj4CAACgUCsTExGDq1KkDlpWSkoJZs2bB3NwcUqkUiYmJEIlEcHZ2Vp909d577/U7b926dZg6dSpMTU2RkpKCY8eO4c0334SRkRE2bdoE4NkJaCkpKVrV2a2zsxNSqRSxsbGcHt+ttLQUx44dw6uvvgqRSAQA2LRpE/z9/TnlsWxXXeSxwLomFm0QGxsLJycnjBgxAklJScjPz0d7eztWrFgBU1NTvPvuu6irq+tzZcSLsN4XnhcaGgpjY2MolUqcPXsWP//8M+cslqjvDnweC9nZ2RCLxbCwsEBdXR02b96M9PR0pKenQyqVQi6XIzIy8qVnPY/l2KvP7Wqg+oUPF6urq/HKK69wLlSXWFxt0JNYLGaaFxYWxjRvMK0eyarfse6/Dx8+ZJbFenVGWj1SP+hr32VJ20t1fw2fK2ZehsG0eqSmfve7P5mREEIIIdzRRIEQQgghGtFEgRBCCCEa0USBEEIIIRrRRIEQQgghGvG6PHIgsT4juPvLN1jh8v38v4TlVRT19fXMsgAM+BfQvCwsz1hOS0tjlgUA6enpTPNYXmUD6PeVCoMBy6+dZn2VwieffMI079atW0zzAgMDmWVxXSFYk5d1FQW9o0AIIYQQjWiiQAghhBCNaKJACCGEEI1ookAIIYQQjWiiQAghhBCNeE8Uzpw5AycnJ9jb2yMxMXFAsz744AOcPHkSWVlZ6m0rV65EZmYmMjIykJycrNUaEWlpaZDJZJBKpb22x8XFobq6GlVVVdi5c+eA1Me6tp46OzsRGBiI+fPnw8/Pj8nqbyz7CSusa9KnfUGX/QMAgoODsWzZMqxYsQIRERGccwD9bgdd5LHAsiYW+7su+9trr72GsLAwhIWFYd68eTA0NNTq8UuXLsWWLVvw/vvvq7cZGxsjNjYWf/vb3xAbGwtjY+N+57E+zvRUX1+PoKAgzJgxA97e3jh48CCnnG6s+gmviYJCocDatWtx+vRp3LhxAzk5Obhx48aAZZ06darPinjZ2dmIiopCdHQ0Ll68iOjo6H7nZWZmYsGCBb22icVihISEwMXFBc7OzlrtVCzrY11bT0OHDsXx48dRWFiIs2fPQiKR4OrVq5yyALb9hBXWNenbvqDL/tHt0KFDyM7O7jVgakuf20EXeSywronF/q6r/mZiYoJp06bhxIkTOHbsGAwMDGBvb69VxpUrV5Camtprm5+fH2pra7Fz507U1tbCz8+v33msjzM9CQQCbN++HZcuXUJhYSEOHz6Mmzdvcspi2U94TRQuX74Me3t7TJkyBUKhEMuWLUN+fv6AZVVWVuLRo0e9tj158kT987Bhw/ALi2X2UVxcjAcPHvTatmbNGiQmJkIulwMAmpubB6Q+1rX1ZGBgABMTEwBAV1cXurq6YGBgwCkLYNtPWGFdk77tC7rsHyzpczvoIo8F1jWx2N912d+GDBkCgUAAAwMDCAQCtLe3a/X427dv9xpnAWDq1Km4cuUKgGcTCW2WX2Z9nOnJ2toarq6uAABTU1M4OjqiqamJUxbLfsJrotDQ0IAJEyaob9va2nL+Yg+WWc+LjY3F559/Dn9/f95fdOPo6AhfX1+UlpZCIpHAw8NDb+pjWZtCoYC/vz9cXFzg6+uL6dOnc87SZdtyxbqm38K+wLJ/GBgYIC4uDuHh4by+rEyf20EXeSzooiaW+3s3Fv2tvb0dFRUVCA8PR2RkJORyOZMvjDM1NcXjx48BAI8fP4apqSnvTJbHGQC4e/cupFIp3N3dOT2eZT8ZFCczpqSkIDQ0FAUFBVi0aBGvLIFAADMzM3h7e2PDhg04fvy43tTHsjZDQ0MUFBSgrKwMFRUVnN/+IvqDZf9ITU3FkSNHsHfvXpw4cQLXrl1jWCl52XSxv7Pob0KhEJMnT8aRI0eQlZUFIyMjODg48K7teVzfAeiJ5XGmra0NERERSEhIwMiRI3nXxheviYKNjQ3q6urUt+vr6zl/nS/LLE0KCwshFot5ZdTX16v/giorK4NSqYSFhQWD6vjXp4vaRo0aBR8fH0gkEs4ZL6NttcW6pt/CvsCyf4wdOxYAYGZmBrFYjG+//ZZTjj63gy7yWNBlTSz2924s+putrS0ePXqEzs5OKJVK3L59G9bW1rxr6/kugqmpKdra2nhnduM7jj99+hQRERFYsmQJgoODOeew7Ce8Jgqenp6ora3FnTt3IJfLcfToUc5PjGVWT7a2tuqfRSIR7t69yysvLy8Pc+bMAQA4ODhAKBSipaVFL+pjVVtraysePnwIAOjo6EBxcbHWJxD1pKu25YN1Tb+FfYFV/+jo6FB/TtzR0YHS0lLY2dlxqkmf20EXeSywron1/t6NRX9ra2uDlZUVBIJnyxLZ2trixx9/5F3bjRs31B+FeHh4cJ7odmM1jqtUKsTFxcHR0RFxcXG8amLZT3gtCiUQCLB//34EBARAoVAgJiZGq5NCWGdt2bIFrq6uGD16NHJzc5GWloaZM2di4sSJUCqVkMlkSEpK6ndednY2xGIxLCwsUFdXh82bNyM9PR3p6emQSqWQy+WIjIwckPpY19aTTCbDunXroFAooFKpEBQUhHnz5nHKAtj2E1ZY16Rv+4Iu+0drayvi4+MBPDv5bcGCBfDx8eGUpc/toIs8FljXxGJ/11V/u3//Pm7fvo3FixdDpVKhublZ6zP3//jHP8LOzg4mJib47//+bxQUFODcuXMIDw+Hl5cXfvzxR3z66af9zmN9nOmptLQUx44dw6uvvgqRSAQA2LRpE/z9/bXOYtlPDFS/8OFMdXU181UaWel+EVm5cOEC07xZs2YxzWNZn76vHsmq3+lz/2WNz1UpL1JWVsY0j8VJv78F+tp3WZ6A2fOvZxb0ffXI0tJSZln6vnqkpn43KE5mJIQQQgg3NFEghBBCiEY0USCEEEKIRjRRIIQQQohGvK560Fb3JTgs/OUvf2GWBbA/mdHJyYlpXnV1NbOsL7/8klkW8OyrWol2duzYwTTv//7v/5jmOTs7M80jA4vrIkUvYmZmxiwLAOd1ETRpbW1lmsfy5M3s7GxmWcDLG3vpHQVCCCGEaEQTBUIIIYRoRBMFQgghhGhEEwVCCCGEaEQTBUIIIYRoxHuicObMGTg5OcHe3h6JiYmcc+rr6xEUFIQZM2bA29sbBw8e5FVXY2Mj4uPj1f+ioqK0/vrMtLQ0yGQySKXSXtvj4uJQXV2Nqqoq7Ny5s9950dHR2LNnD7Zu3are5uHhga1btyI1NRWTJk3qd9a+fftw8+ZNfPPNN+pt8fHxqKqqgkQigUQi4bU+w2uvvYawsDCEhYVh3rx5MDQ05JwFsOsnLLGuiWWep6cnVq1ahdjYWHh6evKura2tDVu2bEFUVBSio6N5LYKzevVqTJw4Ee7u7rzrAvS7HXSRxwLLmli0py7HI5b9rbOzE4GBgZg/fz78/Pywe/durTNYHxd60tdxl9dEQaFQYO3atTh9+jRu3LiBnJwcrRfs6CYQCLB9+3ZcunQJhYWFOHz4MK810cePH49du3Zh165dSExMhFAohJeXl1YZmZmZWLBgQa9tYrEYISEhcHFxgbOzs1Yd7cKFC9izZ0+vbQ0NDThw4ABqamq0qi0nJwdLly7ts/3gwYMQi8UQi8X4+uuvtcrsZmJigmnTpuHEiRM4duwYDAwMeK0mx7KfsMK6JpZ5lpaWcHV1RUZGBlJTU+Hg4IAxY8Zwrg0A9u/fD09PT2RmZiIlJUWrSenzwsPDkZ+fz6uebvrcDrrIY4F1TSzaU5fjEcv+NnToUBw/fhyFhYU4e/YsJBIJrl69qlUG6+NCN30ed3lNFC5fvgx7e3tMmTIFQqEQy5Yt49yg1tbWcHV1BfBsfXBHR0c0NTXxKU9NKpXCysoKlpaWWj2uuLgYDx486LVtzZo1SExMhFwuBwA0Nzf3O6+mpka9PG+3pqYmyGQyreoCgJKSEibLrWoyZMgQCAQCGBgYQCAQ9KlbGyz7CSusa2KZZ25ujsbGRnR1dUGlUuGHH37g9b0cbW1tkEqleOONNwAARkZGGDFiBOc8kUjE7Fp6fW4HXeSxwLomFu2py/GIZX8zMDCAiYkJgGcrn3Z1dWm9oBrr40JP+jru8pooNDQ0YMKECerbtra2TFYpu3v3LqRSKbO3Ni9evMhsNUdHR0f4+vqitLQUEolE71bFW7lyJYqKirBv3z7OK4u1t7ejoqIC4eHhiIyMhFwu57XipK76CR+sa2KZ19zcjAkTJsDY2BgCgQB2dnYYOXIk59ru3buHUaNGYdeuXVi9ejV2796Njo4Oznks6XM76CKPBX2sSRMW4xFrCoUC/v7+cHFxga+vL6ZPn847k8VxQZ/HXb07mbGtrQ0RERFISEjgNTh26+rqwtWrV+Ht7c2gumcfkZiZmcHb2xsbNmzA8ePHmeSykJGRAXd3d8yePRsymQzbtm3jlCMUCjF58mQcOXIEWVlZMDIygoODA+NqiSatra0oKSnB8uXLsXz5cshkMvzCavC/SqFQoLa2FsHBwfjXv/6FYcOG4ejRowwrJqQvVuMRa4aGhigoKEBZWRkqKip4fcTdjcVxQZ/HXV4TBRsbG9TV1alv19fXw8bGhnPe06dPERERgSVLliA4OJhPaWrl5eWYPHkyRo8ezSSvvr4eubm5AICysjIolUpYWFgwyearubkZSqUSKpUKWVlZnGfKtra2ePToETo7O6FUKnH79m1YW1tzrot1P2GBdU2s8yorK5Geno5PP/0UnZ2dfd7q1IalpSUsLS3V68y//vrrqK2t5ZzHkr63w2Dou7rCajzSlVGjRsHHxwcSiYR3Fovjgj6Pu7wmCp6enqitrcWdO3cgl8tx9OhRzgd4lUqFuLg4ODo6Ii4ujk9ZvVy4cAE+Pj7M8vLy8jBnzhwAgIODA4RCIVpaWpjl82FlZaX+OTAwkPP6EG1tbbCysoJA8GwpEFtbW16fP7LsJ6ywrol13vDhwwEAI0eOhJOTE6qqqjhnmZmZwdLSUj1olJeX8zqZkSV9b4fB0Hd1hdV4xFJra6t6zaGOjg4UFxfzOmGwG4vjgj6Pu7wWhRIIBNi/fz8CAgKgUCgQExODqVOncsoqLS3FsWPH8Oqrr0IkEgEANm3aBH9/f871dXZ2QiqVIjY2ltPjs7OzIRaLYWFhgbq6OmzevBnp6elIT0+HVCqFXC5HZGRkv/NiY2Ph5OSEESNGICkpCfn5+Whvb8eKFStgamqKd999F3V1dX2ujHiRlJQUzJo1C+bm5pBKpUhMTIRIJIKzs7P6BLj33nuP0/O+f/8+bt++jcWLF0OlUqG5uZnXWdUs+wkrrGtinRcaGgpjY2MolUqcPXsWP//8M+csAHjnnXeQkJCAp0+fYty4cYiPj+ecFRERgeLiYrS0tMDOzg4ffvghoqKiOGXpezsMhr7Loj11OR6x7G8ymQzr1q2DQqGASqVCUFCQ1pdtsj4udNPncddA9QsfflZXV6vfrmSB5eqRZ8+eZZYFAGFhYUzzYmJimObl5eUxy9q+fTuzLID9Cmas+h3r/ssS69UjZ86cyTSP5btwADBs2DCmefpKX/tuZ2cnsyzWH3OwPhFTn1eP/OSTT5hlAS9v7NW7kxkJIYQQoj9ookAIIYQQjWiiQAghhBCNaKJACCGEEI1ookAIIYQQjXhdHqktll/hyfq6YdZXAiQnJzPNW7hwIbMsfbzmerA5ffo007yAgACmeYPlKoXBgmV7shyLAMDY2JhpHqt1IbqxvILN3NycWdbLRO8oEEIIIUQjmigQQgghRCOaKBBCCCFEI5ooEEIIIUQjmigQQgghRCPeE4UzZ87AyckJ9vb2SExM1Jus1atXY+LEiXB3d+eV05OnpydWrVqF2NhYeHp6av34ffv24ebNm/jmm2/U2+Lj41FVVQWJRAKJRNLvBUqio6OxZ88ebN26Vb3Nw8MDW7duRWpqKq/VATs7OxEYGIj58+fDz88Pu3fv5pzVjWXbssK6Jr55H3zwAU6ePImsrCz1tpUrVyIzMxMZGRlITk7mfNZ0cHAwli1bhhUrViAiIoJTRk/6ut//FvJY0LfnyHo8SktLg0wmg1Qq7bU9Li4O1dXVqKqqws6dO/uVxXLcBXQ79jY2NiI+Pl79LyoqCl999RXnPFb9hNdEQaFQYO3atTh9+jRu3LiBnJwczqtdscwCgPDwcOTn53N+/PMsLS3h6uqKjIwMpKamwsHBAWPGjNEqIycnB0uXLu2z/eDBgxCLxRCLxfj666/7lXXhwoU+q0w2NDTgwIEDqKmp0aqu5w0dOhTHjx9HYWEhzp49C4lEgqtXr3LOY922LLCuiUXeqVOn+qywl52djaioKERHR+PixYuIjo7mXOOhQ4eQnZ3dayLChT7v9/qex4I+PkfW41FmZiYWLFjQa5tYLEZISAhcXFzg7Ozc7z9gWI67gG7H3vHjx2PXrl3YtWsXEhMTIRQK4eXlxSmLZT/hNVG4fPky7O3tMWXKFAiFQixbtozzwZllFgCIRCKm19Oam5ujsbERXV1d6mVTnZyctMooKSnhtb54TzU1NWhvb++1rampCTKZjHe2gYEBTExMAABdXV3o6uqCgYEB5zzWbcsC65pY5FVWVuLRo0e9tj158kT987Bhw/ALi72+NPq83+t7Hgv6+BxZj0fFxcV48OBBr21r1qxBYmIi5HI5AKC5ublfWSzHXUC3Y29PUqkUVlZWsLS05PR4lv2E10ShoaEBEyZMUN+2tbXlvGQoyyxdaG5uxoQJE2BsbAyBQAA7OzuMHDmSSfbKlStRVFSEffv2Mf1SKj4UCgX8/f3h4uICX19fTJ8+nXOWPrYt65p0+RxjY2Px+eefw9/fH2lpaZwyDAwMEBcXh/DwcOTm5vKqR5/3e33PY2EwPMcXcXR0hK+vL0pLSyGRSODh4cErTx/H3Z4uXryIWbNmcX48y3alkxn7qbW1FSUlJVi+fDmWL18OmUzG5K+7jIwMuLu7Y/bs2ZDJZNi2bRuDavkzNDREQUEBysrKUFFRgZs3bw50SYNWSkoKQkNDUVBQgEWLFnHKSE1NxZEjR7B3716cOHEC165dY1wlIbolEAhgZmYGb29vbNiwAcePH+ecpa/jbreuri5cvXoV3t7eA10KAJ4TBRsbG9TV1alv19fXw8bGZsCzdKWyshLp6en49NNP0dnZ2eetMS6am5uhVCqhUqmQlZXF6y93XRg1ahR8fHwgkUg4Z+hj27Ku6WU8x8LCQojFYk6PHTt2LIBnX28rFovx7bffcq5Dn/d7fc9jYTA8xxepr69XvxtWVlYGpVIJCwsLTln6Pu6Wl5dj8uTJGD16NOcMlu3Ka6Lg6emJ2tpa3LlzB3K5HEePHuW8jgDLLF0ZPnw4AGDkyJFwcnJCVVUV70wrKyv1z4GBgaiuruadyVdraysePnwIAOjo6EBxcTHs7e055+lj27KuSVfP0dbWVv2zSCTC3bt3tc7o6OhQf6ba0dGB0tJS2NnZca5Jn/d7fc9jYTA8xxfJy8vDnDlzAAAODg4QCoVoaWnhlKWP425PFy5cgI+PD68Mlu3Ka1EogUCA/fv3IyAgAAqFAjExMZg6deqAZwFAREQEiouL0dLSAjs7O3z44YeIiorinAcAoaGhMDY2hlKpxNmzZ/Hzzz9r9fiUlBTMmjUL5ubmkEqlSExMhEgkgrOzs/oEyefPetckNjYWTk5OGDFiBJKSkpCfn4/29nasWLECpqamePfdd1FXV9fn7Nz+kMlkWLduHRQKBVQqFYKCgrS6fOh5rNuWBdY1scjbsmULXF1dMXr0aOTm5iItLQ0zZ87ExIkToVQqIZPJkJSUpHVtra2tiI+PB/DsLc0FCxbwGoT0eb/X9zwW9PE5sh6PsrOzIRaLYWFhgbq6OmzevBnp6elIT0+HVCqFXC5HZGRkv7JYjru6eK7P6+zshFQqRWxsLKfHd2PZTwxUv/BBe3V1NV555RXOhepSZ2cn07x//vOfTPP0efXIntf/ssD6bUpW/U6f+69IJGKa9/HHHzPN43ui2GA1GPruW2+9xTQvPT2daR7r1SNZjr2sV3l90WWffGjqd3QyIyGEEEI0ookCIYQQQjSiiQIhhBBCNKKJAiGEEEI0ookCIYQQQjT6xaseKioqMHTo0JdZDyH4+eef4erqyjuH+i952ajvkt8yTf33FycKhBBCCBnc6KMHQgghhGhEEwVCCCGEaEQTBUIIIYRoRBMFQgghhGhEEwVCCCGEaEQTBUIIIYRoRBMFQgghhGhEEwVCCCGEaEQTBUIIIYRoRBMFQgghhGhEEwUy6G3atAkHDhxgfl8WvvzyS8TExGj8/0uXLuH111/vd97KlSvxxRdfsCjtpXNycsLdu3e1flxjYyPc3NygUCh4/f6NGzdiz549vDII+S0SDHQBhOiSn58fWlpaYGhoCENDQ9jb2yMkJARhYWEYMuTZPHnr1q39zut530uXLmHDhg0oKipiXne34OBgBAcHq287OTmhoKAAkyZN4pR3+PBhVqVpJTc3F5999hlycnJe+u8eP348ysvLX/rvJeT3giYK5Hfv0KFD8PHxwePHj3H58mXs2LED169fxz/+8Y+BLo0QQvQeffRABg1TU1PMnTsXH3/8Mb744gvU1NQA6PuWcmpqKkQiEUQiET777LNeb3l33/fJkydYtWoV7t+/Dzc3N7i5uUEmk+H69etYtGgRpk+fDh8fH42TkT/96U84e/YsAODq1atwcnKCRCIBAJSUlCAkJATAs7/Ely9fDgD44x//CAAICQmBm5sbTp06pc5LT0/HzJkzIRKJ8Pnnn2t8DcLDw/HZZ5+ps5ctW4aEhAR4eHhg7ty5uHbtGnJzczF79mzMnDmz18cUGzduxKZNmxAdHQ03Nzf86U9/QkNDAwCgvr4eTk5O6Orq6vO7bt26hc2bN6OiogJubm7w8PAAAMjlcuzcuRNisRg+Pj7YtGkTOjs71Y8/fPiwuh1OnDih8Tl1/65//vOfWLx4MaZPn441a9bgp59+6lPbTz/9hNdffx3nzp0DALS3t2P+/PnIy8sDANy6dQvR0dHw8vJCQEBAr9e4pwcPHmD16tXw8PCAl5cXVqxYAaVS+Ys1EvJbRRMFMui89tprsLa2xpUrV/r8X1FRETIzM5GRkYHCwkJcunTphRnDhw9Hamoqxo4di/LycpSXl8PKygo7duxAREQErl27hsLCQvzhD3944eM9PT1x+fJlAEBZWRkmTJiAsrIyAMDly5fh6enZ5zH/8z//AwDIz89HeXk53njjDQBAS0sLHj9+jKKiIuzYsQNbt27Fw4cP+/VaXL9+HU5OTrh06RKCgoKwfv16SKVSFBYWIikpCVu3bkV7e7v6/idPnsTbb7+NS5cu4T//8z/x/vvv/+rvsLOzw0cffQRXV1eUl5erX/fdu3fjzp07yMvLQ0FBAe7fv68+/6OoqAjp6elIT09HQUEBSkpKfvX35OXlISEhAd988w0EAgG2b9/e5z6jR49GQkICPvzwQ7S2tuIf//gHXnnlFSxcuBBPnjxBTEwMgoKCcPHiRezZswcfffQRvvvuuz45GRkZsLKyQklJCS5cuID169fDwMDgV2sk5LeIJgpkUBo7duwLD6anT5/GokWL4ODgAGNjY7zzzjta5QoEAvzwww948OABTExM4Orq+sL7eXl59ZoorF69Wj1RKCsrg5eXl1a/c+3atTAyMsLs2bMxfPhw3Llzp1+PtbW1RWhoKAwNDfHGG2+gqakJa9euhVAohEgkglAoxA8//KC+v1gshqenJ4RCIdatW4eKigo0NTX1u9ZuKpUKx48fx9///neMHj0aI0aMwOrVq/HVV18B+P/t4OjoiOHDhyMuLu5XM0NCQtT3f/fdd3HmzJkXnsAoEomwYMECREVF4d///jc++ugjAIBEIoGNjQ1CQ0MhEAjw6quvIiAgAGfOnOmTIRAI0NzcjMbGRhgZGcHDw4MmCuR3iyYKZFCSyWQYNWpUn+3379+HtbW1+va4ceO0yt2xYwe+//57/OEPf0BoaCjOnz//wvu5urri+++/R0tLC27evImQkBA0NTXhwYMHuH79uvrt+f4YPXo0BIL/f7qRsbExnjx50q/Hmpubq38eNmwYAMDCwkK9bejQob3eUej52piYmGDUqFG4f/9+v2vt9uDBA3R0dGDRokXw8PCAh4cHVq5ciR9//BHAs3bo+drb2Nj8ambP+48fPx5Pnz5V5z1v6dKlqKmpwaJFizBmzBgAQENDg/q17/538uRJNDc393n8W2+9hUmTJiEmJgZz585FSkqKVs+fkN8SOpmRDDrXr1+HTCaDu7t7n/8bO3YsZDKZ+vYv/bX8or8g/+M//gPJyclQKpUoKCjAX/7yF1y6dAnDhw/vdT9jY2NMnToVWVlZcHBwgFAohJubGzIzMzFx4kSYmZnxeIa6c+/ePfXP7e3tePjwIcaOHYuhQ4cCADo7OzFixAgA6HWAff61GjNmDIYNG4avvvoKVlZWfX7P2LFje732jY2Nv1pbz/s3NTXByMgIY8aM6dOGCoUCmzZtwsKFC5GdnY1FixZh0qRJGDduHDw9PZGRkfGrv2vEiBHYuHEjNm7ciJqaGkRGRmLatGmYOXPmrz6WkN8aekeBDBptbW04f/481q9fj+DgYDg5OfW5z4IFC5Cbm4tbt26ho6MDn3zyicY8c3Nz/PTTT3j8+LF6W35+Ph48eIAhQ4Zg5MiRAKC+DPN5Xl5eOHLkiPp8hBkzZvS6/SIWFhaoq6vr1/PVhX//+9+4cuUK5HI59u7dCxcXF4wbNw5mZmawsrJCfn4+FAoFTpw40atOc3NzyGQyyOVyAM9ekyVLliAhIQGtra0Anr3LU1xcDOBZO3zxxRf47rvv0NHRgf379/9qbV9++aX6/nv37kVAQAAMDQ373O/QoUMwMDBAQkIC3nrrLfztb3+DQqGAWCzG999/j7y8PDx9+hRPnz7F9evXcevWrT4Z58+fx927d6FSqWBqagpDQ0P66IH8btFEgfzu/fnPf4abmxtmz56NQ4cOITo6WuPVCLNnz0Z4eDgiIiIwf/58uLi4AACEQmGf+9rZ2SEwMBDz5s2Dh4eH+kAXGBgINzc37NixA3v27FG/pf88T09PtLe3qycGz99+kbi4OGzcuBEeHh4az8jXpaCgIBw4cAAzZszAt99+i6SkJPX/bdu2DWlpaZgxYwa+++47uLm5qf/P29sb9vb2EIlEmDFjBgBgw4YNmDRpEpYuXYrp06cjKipKfW7F7NmzERkZicjISMyfPx/e3t6/WltISAg2btyIWbNmQS6X47/+67/63KeqqgqZmZnYuXMnDA0NsWrVKgBASkoKRowYgbS0NJw6dQq+vr4QiUTYvXu3enLT0927d9VXf4SFhWH58uX9qpGQ3yIDlUqlGugiCNFXt27dQlBQEKRSaa/zAAajjRs3wsrKCuvWrRvoUvoIDw9HcHAwlixZMtClEPK7Q+8oEPKcwsJCyOVyPHz4EElJSZgzZ86gnyQQQgYvmigQ8pyjR49i5syZmD9/PgwNDbFly5aBLokQQgYMffRACCGEEI3oHQVCCCGEaEQTBUIIIYRoRBMFQgghhGhEEwVCCCGEaEQTBUIIIYRo9P8ADRxv4r0TbGQAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"new = np.empty_like(digits)\n",
"for n in range(new.shape[0]):\n",
" new[n] = fill_missing(digits[n])\n",
"\n",
"show_digits(digits, title=\"Digits with missing pixels\"), show_digits(\n",
" new, title=\"Digits with imputed pixels\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "41904e77-0f98-43c3-afd1-dcfd0c98200b",
"metadata": {
"tags": []
},
"source": [
"## Reducing Features"
]
},
{
"cell_type": "markdown",
"id": "731dd15c-6901-4a23-96cf-a42d103fbd16",
"metadata": {},
"source": [
"### Principal Component Analysis"
]
},
{
"cell_type": "markdown",
"id": "6d0aa854-2346-468c-b869-3cb615e5d6d0",
"metadata": {},
"source": [
"The following initial examples are based on the iris datasets (directly loaded via scikit-learn). The dataset consists of 50 samples from three species of the iris flower and describes its sepals (Kelchblatt) and petals (Blütenblatt) (length and width). More information on the dataset can be found here: https://en.wikipedia.org/wiki/Iris_flower_data_set."
]
},
{
"cell_type": "markdown",
"id": "d9a0a3fa-6e2d-47d1-8baf-eea4b8ffcbc6",
"metadata": {},
"source": [
"#### Example 2D -> 1D"
]
},
{
"cell_type": "markdown",
"id": "e30aed5e-b026-44ce-9da4-ae698e02dfa9",
"metadata": {},
"source": [
"Note that we could also load the iris dataset from scikit learn via the `load_iris` method and then convert it to a dataframe and reset the column names."
]
},
{
"cell_type": "code",
"execution_count": 76,
"id": "67acad73-88ee-445f-b303-af99f37af6c0",
"metadata": {},
"outputs": [],
"source": [
"# load iris dataset via sklearn\n",
"def load_iris():\n",
" iris = sklearn.datasets.load_iris(as_frame=True)\n",
" return iris.frame"
]
},
{
"cell_type": "code",
"execution_count": 77,
"id": "a7a7fbb4-744d-478c-b628-bba92964cce7",
"metadata": {},
"outputs": [],
"source": [
"iris = load_iris()"
]
},
{
"cell_type": "code",
"execution_count": 78,
"id": "935e8acd-f27c-4cec-829f-36c0240da5d4",
"metadata": {},
"outputs": [
{
"ename": "KeyError",
"evalue": "'species'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m~/.local/share/virtualenvs/data-engineering-analytics-notebooks-Qx0adyYX/lib64/python3.9/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3360\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3361\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3362\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/share/virtualenvs/data-engineering-analytics-notebooks-Qx0adyYX/lib64/python3.9/site-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32m~/.local/share/virtualenvs/data-engineering-analytics-notebooks-Qx0adyYX/lib64/python3.9/site-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mKeyError\u001b[0m: 'species'",
"\nThe above exception was the direct cause of the following exception:\n",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/tmp/ipykernel_17572/353937712.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# first look at data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpairplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miris\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'species'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpalette\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"viridis\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m~/.local/share/virtualenvs/data-engineering-analytics-notebooks-Qx0adyYX/lib/python3.9/site-packages/seaborn/_decorators.py\u001b[0m in \u001b[0;36minner_f\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 44\u001b[0m )\n\u001b[1;32m 45\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0marg\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0marg\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mparameters\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0minner_f\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/share/virtualenvs/data-engineering-analytics-notebooks-Qx0adyYX/lib/python3.9/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36mpairplot\u001b[0;34m(data, hue, hue_order, palette, vars, x_vars, y_vars, kind, diag_kind, markers, height, aspect, corner, dropna, plot_kws, diag_kws, grid_kws, size)\u001b[0m\n\u001b[1;32m 2094\u001b[0m \u001b[0;31m# Set up the PairGrid\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2095\u001b[0m \u001b[0mgrid_kws\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetdefault\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"diag_sharey\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdiag_kind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"hist\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2096\u001b[0;31m grid = PairGrid(data, vars=vars, x_vars=x_vars, y_vars=y_vars, hue=hue,\n\u001b[0m\u001b[1;32m 2097\u001b[0m \u001b[0mhue_order\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mhue_order\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpalette\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpalette\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcorner\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcorner\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2098\u001b[0m height=height, aspect=aspect, dropna=dropna, **grid_kws)\n",
"\u001b[0;32m~/.local/share/virtualenvs/data-engineering-analytics-notebooks-Qx0adyYX/lib/python3.9/site-packages/seaborn/_decorators.py\u001b[0m in \u001b[0;36minner_f\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 44\u001b[0m )\n\u001b[1;32m 45\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0marg\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0marg\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mparameters\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0minner_f\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/share/virtualenvs/data-engineering-analytics-notebooks-Qx0adyYX/lib/python3.9/site-packages/seaborn/axisgrid.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data, hue, hue_order, palette, hue_kws, vars, x_vars, y_vars, corner, diag_sharey, height, aspect, layout_pad, despine, dropna, size)\u001b[0m\n\u001b[1;32m 1287\u001b[0m \u001b[0;31m# to the axes-level functions, while always handling legend creation.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1288\u001b[0m \u001b[0;31m# See GH2307\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1289\u001b[0;31m \u001b[0mhue_names\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mhue_order\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcategorical_order\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mhue\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue_order\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1290\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdropna\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1291\u001b[0m \u001b[0;31m# Filter NA from the list of unique hue names\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/share/virtualenvs/data-engineering-analytics-notebooks-Qx0adyYX/lib64/python3.9/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3456\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3457\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3458\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3459\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3460\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/share/virtualenvs/data-engineering-analytics-notebooks-Qx0adyYX/lib64/python3.9/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3361\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3362\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3363\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3364\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3365\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_scalar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhasnans\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyError\u001b[0m: 'species'"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAvcAAALYCAYAAAD4hd1YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAB0z0lEQVR4nO3df1yUdb7//+cgolZI6lkvzFhsA4sjlJbu6laiILGC5O9WK6tN+mHHop8m1VJhmWvpRutZjUOLH6WfmmmIpYUlu5v9Mo3UKaPTKGqMVpj4A4iZ6/uH3+ZEChcjM5Azj/vttrcb1zXveb9f175f4dPxmhmbaZqmAAAAAJzyQtq7AAAAAAC+QbgHAAAAAgThHgAAAAgQhHsAAAAgQBDuAQAAgABBuAcAAAAChN/CfXZ2toYMGaJRo0ad8HHTNPXoo48qJSVFGRkZ2rZtm79KAQAAAIKC38L9uHHjVFBQ0OTjZWVlcjgcWrdunWbNmqWHH37YX6UAAAAAQcFv4X7QoEGKiIho8vHS0lKNGTNGNptN/fv318GDB7Vv3z5/lQMAAAAEvND2WtjpdCoyMtJzHBkZKafTqZ49ezb7vE2bNikkpO3fKuB2u1m3Dfz4lz1/Cbb+ac+16SHfCrZ9pH98K9j2kf7xrWDbx/Zc2xc91G7h/mSFhIRowIABbb6u3W5XXFwc67bBuv4UbP3TnmvTQ74VjPtI//hOMO4j/eM7wbaP7bm2L3qo3T4txzAMVVVVeY6rqqpkGEZ7lQMAAACc8tot3CclJWnlypUyTVNbtmxReHi45S05AAAAAJrmt9ty7rrrLn3wwQeqrq7W0KFDddttt6mhoUGSNHnyZCUmJmrDhg1KSUlRly5dNHv2bH+VAgAAAAQFv4X7+fPnN/u4zWbTQw895K/lAQAAgKDDN9QCAAAAAYJwDwAAAAQIwj0AAAAQIAj3AAAAQIAg3AMAAAABgnAPAAAABAjCPQAAABAgCPcAAABAgCDcAwAAAAGCcA8AAAAECMI9AAAAECAI9wAAAECACG3uwc2bN+u1117TRx99pP3796tz586KjY3VsGHDdMUVVyg8PLyt6gQAAABgoclwn5mZqZ49eyo5OVm33HKLevToobq6OjkcDr3//vu69dZbdf311ys5Obkt6wUAAADQhCbD/dy5c9W9e/fGg0ND1a9fP/Xr10833HCDvvvuO78XCAAAAKBlmrzn/ufB/tChQzpw4IDnfyca83NlZWVKTU1VSkqK8vPzj3t87969mjJlisaMGaOMjAxt2LDhJC4BAAAAgGRxz70kvfjii/rb3/6mTp06ec7ZbDaVlpY2+zyXy6Xc3FwVFhbKMAxNmDBBSUlJiomJ8YxZuHChRo4cqauuukoVFRW66aabtH79+lZcDgAAABC8LMP9P/7xDxUXF1u+Sv9z5eXlio6OVlRUlCQpPT1dpaWljcK9zWbToUOHJEk1NTXq2bOnV2sAAAAA+D+W4T4qKkpdunTxemKn06nIyEjPsWEYKi8vbzRm+vTpmjp1qoqKinT06FEVFhZazut2u2W3272up7Vqa2tZNwAEW/+059r0kG8F2z7SP74VbPtI//hWMO7jqdxDluH+7rvv1qRJk3ThhRcqLCzMc/7BBx9s9eIlJSUaO3asbrjhBm3evFkzZszQ6tWrFRLS9Mfvh4SEKC4urtVre8tut7NuG63rT8HWP+25Nj3kW8G4j/SP7wTjPtI/vhNs+9iea/uihyzDfU5OjgYPHqy+ffs2G7p/zjAMVVVVeY6dTqcMw2g0Zvny5SooKJAkDRgwQHV1daqurlaPHj1avA4AAACAYyzDfUNDg7Kzs72eOCEhQQ6HQ5WVlTIMQyUlJZo3b16jMb169dLGjRs1btw4ffnll6qrq/P63n4AAAAAx1iG+6FDh+qll17S8OHDG92Wc+aZZzY/cWiocnJylJmZKZfLpfHjxys2NlZ5eXmKj49XcnKyZs6cqQcffFCLFy+WzWbTnDlzZLPZWn1RAAAAQDCyDPerV6+WJD3zzDOecy35KExJSkxMVGJiYqNzWVlZnp9jYmL04osvtrhYAAAAAE2zDPd87jwAAABwarB8h+xzzz2ngwcPeo6///57Pffcc34tCgAAAID3LMP9yy+/rK5du3qOIyIitGzZMr8WBQAAAMB7luHe7XbLNE3Pscvl0g8//ODXogAAAAB4z/Ke+0svvVR33HGHJk2aJEl68cUXddlll/m9MAAAAADesQz39957r1566SW98MILkqTf//73mjhxot8LAwAAAOAdy3AfEhKiyZMna/LkyW1RDwAAAICT1OQ997fccovWr19/wvvrKysrlZeXp+XLl/u1OAAAAAAt1+Qr97NmzVJhYaFmz56tiIgIde/eXXV1ddq9e7eio6N19dVXa8SIEW1ZKwAAAIBmNBnuf/WrX2nGjBmaMWOGdu/erf3796tz587q06ePunTp0pY1AgAAAGgBy3vuJenss8/W2Wef7e9aAAAAALSC5efcAwAAADg1EO4BAACAAEG4BwAAAAKE5T33mzZt0oIFC7R37141NDTINE3ZbDaVlpZaTl5WVqbHHntMbrdbEydO1E033XTcmDVr1mjBggWy2Ww6//zzNW/evJO7EgAAACDIWYb7Bx54QNnZ2YqPj1dISMtf6He5XMrNzVVhYaEMw9CECROUlJSkmJgYzxiHw6H8/Hy98MILioiI0LfffntyVwEAAADAOtyHh4crMTHR64nLy8sVHR2tqKgoSVJ6erpKS0sbhfuXX35ZV199tSIiIiRJPXr08HodAAAAAMc0Ge63bdsmSfrd736nv/zlL7r88ssVFhbmebxfv37NTux0OhUZGek5NgxD5eXljcY4HA5J0qRJk+R2uzV9+nQNHTq02XndbrfsdnuzY/yhtraWdQNAsPVPe65ND/lWsO0j/eNbwbaP9I9vBeM+nso91GS4nzNnTqPjrVu3en622WxasmRJqxd3uVzauXOnli5dqqqqKl1zzTUqLi5W165dm3xOSEiI4uLiWr22t+x2O+u20br+FGz9055r00O+FYz7SP/4TjDuI/3jO8G2j+25ti96qMlwv3TpUklSZWWl59aaH1VWVlpObBiGqqqqPMdOp1OGYRw35sILL1THjh0VFRWlPn36yOFw6IILLvDqIgAAAAC04KMwb7/99uPOZWVlWU6ckJAgh8OhyspK1dfXq6SkRElJSY3GjBgxQh988IEk6bvvvpPD4TjuLxIAAAAAWqbJV+6//PJLVVRUqKamRuvWrfOcP3TokOrq6qwnDg1VTk6OMjMz5XK5NH78eMXGxiovL0/x8fFKTk7WZZddpn//+99KS0tThw4dNGPGDHXr1s03VwYAAAAEmSbD/VdffaV33nlHNTU1evvttz3nTz/9dM2aNatFkycmJh73STs/fdXfZrMpOztb2dnZ3tYNAAAA4GeaDPcjRozQiBEjtHnzZg0YMKAtawIAAABwEiw/53716tUqKSlpdO6MM85QfHy8RowY4bfCAAAAAHjH8g219fX1stvtio6OVnR0tD7//HM5nU4tX75cjz32WFvUCAAAAKAFLF+5//zzz/XCCy+oQ4cOkqTJkyfr6quv1vPPP6+MjAy/FwgAAACgZSxfuf/+++915MgRz/HRo0d14MABdejQodE31gIAAABoX5av3GdmZmr06NH63e9+J9M09eGHH+qWW27RkSNHNGTIkLaoEQAAAEALWIb7iRMnKjExUeXl5ZKkO++80/NNs/fdd59/qwMAAADQYpa35UiSaZrq3r27IiIitGvXLn344Yf+rgsAAACAlyxfuX/iiSf0+uuvKyYmRiEh//d3gUGDBvm1MAAAAADesQz3b731lt544w3ePAsAAAD8wlnelhMVFaUffvihLWoBAAAA0AqWr9x36dJFY8aM0ZAhQxq9ev/ggw/6tTAAAAAA3rEM90lJSUpKSmqLWgAAAAC0gmW4Hzt2rGpra7V371795je/aYuaAAAAAJwEy3vu169fr9GjRyszM1OSZLfbdcstt7Ro8rKyMqWmpiolJUX5+flNjlu7dq3OO+88ffrppy0sGwAAAMDPWYb7BQsWaPny5erataskKS4uTrt377ac2OVyKTc3VwUFBSopKdHq1atVUVFx3LhDhw5pyZIluvDCC0+ifAAAAAA/sgz3oaGhCg8Pb3TOZrNZTlxeXq7o6GhFRUUpLCxM6enpKi0tPW5cXl6ebrzxRnXq1MmLsgEAAAD8nGW4j4mJUXFxsVwulxwOh2bNmqUBAwZYTux0OhUZGek5NgxDTqez0Zht27apqqpKw4YN875yAAAAAI1YvqH2z3/+sxYtWqSwsDDddddduuyyy3Trrbe2emG32605c+bo8ccf9/p5dru91et7q7a2lnUDQLD1T3uuTQ/5VrDtI/3jW8G2j/SPbwXjPp7KPdSiz7m/8847deedd3o1sWEYqqqq8hw7nU4ZhuE5Pnz4sHbs2KFrr71WkrR//35NmzZNCxcuVEJCQpPzhoSEKC4uzqtafMFut7NuG63rT8HWP+25Nj3kW8G4j/SP7wTjPtI/vhNs+9iea/uih5oM91afiLNo0aJmH09ISJDD4VBlZaUMw1BJSYnmzZvneTw8PFzvv/++53jKlCmaMWNGs8EeAAAAQNOaDPc33HBD6yYODVVOTo4yMzPlcrk0fvx4xcbGKi8vT/Hx8UpOTm7V/AAAAAAaazLc//a3v2315ImJiUpMTGx0Lisr64Rjly5d2ur1AAAAgGBm+Wk5AAAAAE4NhHsAAAAgQBDuAQAAgADht0/LAQAAANC2/PZpOQAAAADall8/LQcAAABA27H8hlqHw6H58+eroqJCdXV1nvOlpaV+LQwAAACAdyzfUJudna3JkyerQ4cOWrJkicaMGaMrrriiLWoDAAAA4AXLcF9XV6chQ4ZIknr37q3bbrtNGzZs8HthAAAAALxjeVtOWFiY3G63oqOjVVRUJMMwdPjw4baoDQAAAIAXLF+5v//++3X06FE9+OCD2rZtm1atWqW//OUvbVEbAAAAAC9YvnJ/wQUXSJJM09QDDzygM844w+9FAQAAAPCeZbj/9NNPdf/993tuxTnjjDM0e/ZsxcfH+704AAAAAC1nGe7vv/9+PfTQQxo4cKAk6aOPPlJ2draKi4v9XhwAAACAlrO8575Dhw6eYC9JAwcOVGio5d8JAAAAALQxy5Q+aNAg5eTkKD09XTabTWvWrNFvf/tbbdu2TZLUr1+/Jp9bVlamxx57TG63WxMnTtRNN93U6PHCwkItW7ZMHTp0UPfu3TV79mz17t27lZcEAAAABCfLcP/ZZ59JkhYsWNDo/Pbt22Wz2bRkyZITPs/lcik3N1eFhYUyDEMTJkxQUlKSYmJiPGPi4uL0yiuvqEuXLnr++ef1xBNP6KmnnmrF5QAAAADByzLcL1269KQmLi8vV3R0tKKioiRJ6enpKi0tbRTuBw8e7Pm5f//+eu21105qLQAAAAAtCPfffPON5s+fr3379qmgoEAVFRXavHmzJk6c2OzznE6nIiMjPceGYai8vLzJ8cuXL9fQoUMtC3a73bLb7ZbjfK22tpZ1A0Cw9U97rk0P+Vaw7SP941vBto/0j28F4z6eyj1kGe5nzpypcePGadGiRZKkPn366M4777QM995YtWqVtm7dqqKiIsuxISEhiouL89naLWW321m3jdb1p2Drn/Zcmx7yrWDcR/rHd4JxH+kf3wm2fWzPtX3RQ5afllNdXa20tDSFhBwbGhoa6vm5OYZhqKqqynPsdDplGMZx4959910tWrRICxcuVFhYmDe1AwAAAPgJy5R+2mmnqbq6WjabTZK0ZcsWhYeHW06ckJAgh8OhyspK1dfXq6SkRElJSY3GbN++XTk5OVq4cKF69OhxkpcAAAAAQGrhbTnTpk3Trl27NGnSJFVXVysvL8964tBQ5eTkKDMzUy6XS+PHj1dsbKzy8vIUHx+v5ORkzZ07V0eOHFFWVpYkqVevXp7bfwAAAAB4xzLc9+vXT0VFRfrqq69kmqbOOeccdezYsUWTJyYmKjExsdG5H4O8JC1evNi7agEAAAA0yfK2nNdff121tbWKjY3VW2+9pTvvvNPzBVYAAAAAfjksw/3f//53nXHGGfroo4+0ceNGTZgwQQ8//HAblAYAAADAG5bhvkOHDpKkDRs26Morr9SwYcP0ww8/+L0wAAAAAN6xDPeGYSgnJ0dr1qxRYmKi6uvr5Xa726I2AAAAAF6wDPdPPfWULr30Uj377LPq2rWrDhw4oBkzZrRFbQAAAAC8YPlpOV26dNHll1/uOe7Zs6d69uzp16IAAAAAeM/6q2YBAAAAnBII9wAAAECAINwDAAAAAYJwDwAAAAQIwj0AAAAQIAj3AAAAQIAg3AMAAAABgnAPAAAABAi/hvuysjKlpqYqJSVF+fn5xz1eX1+vO+64QykpKZo4caJ2797tz3IAAACAgOa3cO9yuZSbm6uCggKVlJRo9erVqqioaDRm2bJl6tq1q958801df/31evLJJ/1VDgAAABDw/Bbuy8vLFR0draioKIWFhSk9PV2lpaWNxqxfv15jx46VJKWmpmrjxo0yTdNfJQEAAAABLdRfEzudTkVGRnqODcNQeXn5cWN69ep1rJDQUIWHh6u6ulrdu3dvcl6bzSa73e6foi2wrv/V1dX5df5g7J/2XJse8i3W9T/6h3Vbg/4JnHXba21f9JDfwr2/9O/fv71LwCmM/kFr0UNoDfoHrUH/oCX8dluOYRiqqqryHDudThmGcdyYr7/+WpLU0NCgmpoadevWzV8lAQAAAAHNb+E+ISFBDodDlZWVqq+vV0lJiZKSkhqNSUpK0quvvipJWrt2rQYPHiybzeavkgAAAICAZjP9+A7WDRs2aPbs2XK5XBo/frymTZumvLw8xcfHKzk5WXV1dbr33ntlt9sVERGhv/71r4qKivJXOQAAAEBA82u4BwAAANB2+IZaAAAAIEAQ7gEAAIAAQbgHAAAAAgThHgAAAAgQhHsAAAAgQBDuAQAAgABBuAcAAAACBOEeAAAACBCEewAAACBAEO4BAACAAEG4BwAAAAIE4R4AAAAIEIR7AAAAIEAQ7gEAAIAAQbgHAAAAAoTfwn12draGDBmiUaNGnfBx0zT16KOPKiUlRRkZGdq2bZu/SgEAAACCgt/C/bhx41RQUNDk42VlZXI4HFq3bp1mzZqlhx9+2F+lAAAAAEHBb+F+0KBBioiIaPLx0tJSjRkzRjabTf3799fBgwe1b98+f5UDAAAABLzQ9lrY6XQqMjLScxwZGSmn06mePXs2+7xNmzYpJKTt3yrgdrtZtw38+Jc9fwm2/mnPtekh3wq2faR/fCvY9pH+8a1g28f2XNsXPdRu4f5khYSEaMCAAW2+rt1uV1xcHOu2wbr+FGz9055r00O+FYz7SP/4TjDuI/3jO8G2j+25ti96qN0+LccwDFVVVXmOq6qqZBhGe5UDAAAAnPLaLdwnJSVp5cqVMk1TW7ZsUXh4uOUtOQAAAACa5rfbcu666y598MEHqq6u1tChQ3XbbbepoaFBkjR58mQlJiZqw4YNSklJUZcuXTR79mx/lQIAAAAEBb+F+/nz5zf7uM1m00MPPeSv5QEAAICgwzfUAgAAAAGCcA8AAAAECMI9AAAAECAI9wAAAECAINwDAAAAAYJwDwAAAAQIwj0AAAAQIAj3AAAAQIAg3AMAAAABgnAPAAAABAjCPQAAABAgCPcAAABAgCDcAwAAAAEi1GrAp59+qk2bNsnpdKpz586KjY3VJZdcooiIiLaoDwAAAEALNfnK/SuvvKKxY8cqPz9ftbW1+s1vfqMePXro448/1p/+9Cfdd9992rt3b7OTl5WVKTU1VSkpKcrPzz/u8b1792rKlCkaM2aMMjIytGHDhtZfEQAAABCkmnzlvra2Vi+88II6d+58wsftdrt27typs84664SPu1wu5ebmqrCwUIZhaMKECUpKSlJMTIxnzMKFCzVy5EhdddVVqqio0E033aT169e38pIAAACA4NRkuL/66qubfWJcXFyzj5eXlys6OlpRUVGSpPT0dJWWljYK9zabTYcOHZIk1dTUqGfPni0uHAAAAEBjlvfcV1ZWqqioSHv27FFDQ4Pn/KJFi5p9ntPpVGRkpOfYMAyVl5c3GjN9+nRNnTpVRUVFOnr0qAoLCy0LdrvdstvtluN8rba2lnUDQLD1T3uuTQ/5VrDtI/3jW8G2j/SPbwXjPp7KPWQZ7v/rv/5LEyZM0PDhwxUS4tsP1ykpKdHYsWN1ww03aPPmzZoxY4ZWr17d7DohISGW/2rgD3a7nXXbaF1/Crb+ac+16SHfCsZ9pH98Jxj3kf7xnWDbx/Zc2xc9ZBnuO3XqpGuvvdbriQ3DUFVVlefY6XTKMIxGY5YvX66CggJJ0oABA1RXV6fq6mr16NHD6/UAAACAYGf5Uvy1116rBQsWaPPmzdq2bZvnf1YSEhLkcDhUWVmp+vp6lZSUKCkpqdGYXr16aePGjZKkL7/8UnV1derevftJXgoAAAAQ3Cxfud+xY4dWrVql9957TzabTdKxN8IuWbKk+YlDQ5WTk6PMzEy5XC6NHz9esbGxysvLU3x8vJKTkzVz5kw9+OCDWrx4sWw2m+bMmeNZAwAAAIB3LMP9G2+8obfeekthYWFeT56YmKjExMRG57Kysjw/x8TE6MUXX/R6XgAAAADHs7wtJzY2VjU1NW1RCwAAAIBWsHzlvqamRiNHjlRCQoI6duzoOW/1UZgAAAAA2pZluL/tttvaog4AAAAArWQZ7nv16qWePXuqU6dOko59qP8333zj98IAAAAAeMfynvusrKxGn2ATEhLS6E2xAAAAAH4ZLMO9y+Vq9Ek5YWFh+uGHH/xaFAAAAADvWYb77t27q7S01HP81ltvqVu3bn4tCgAAAID3LO+5f+SRR3TPPfdo1qxZkqTIyEjNnTvX74UBAAAA8I5luP/1r3+tl19+WYcPH5YknX766X4vCgAAAID3mrwtZ9WqVXK73Z7j008/vVGw37Vrlz766CP/VgcAAACgxZp85f7AgQMaM2aM+vXrp/j4eHXr1k319fXauXOnPvzwQ3Xr1k133313W9YKAAAAoBlNhvvrrrtO11xzjd577z19/PHH+vzzz9WpUyede+65mjt3rs4666y2rBMAAACAhWbvue/QoYMuueQSXXLJJW1VDwAAAICTZPlRmAAAAABODYR7AAAAIED4NdyXlZUpNTVVKSkpys/PP+GYNWvWKC0tTenp6bxBFwAAAGgFy8+5r6+v19q1a7Vnzx41NDR4zk+fPr3Z57lcLuXm5qqwsFCGYWjChAlKSkpSTEyMZ4zD4VB+fr5eeOEFRURE6Ntvv23FpQAAAADBzTLcT5s2TeHh4erXr5/CwsJaPHF5ebmio6MVFRUlSUpPT1dpaWmjcP/yyy/r6quvVkREhCSpR48e3tYPAAAA4P9nGe6dTqeeffZZryd2Op2KjIz0HBuGofLy8kZjHA6HJGnSpElyu92aPn26hg4d2uy8brdbdrvd63paq7a2lnUDQLD1T3uuTQ/5VrDtI/3jW8G2j/SPbwXjPp7KPWQZ7gcMGKDPP/9c5513ns8Xd7lc2rlzp5YuXaqqqipdc801Ki4uVteuXZt8TkhIiOLi4nxeixW73c66bbSuPwVb/7Tn2vSQbwXjPtI/vhOM+0j/+E6w7WN7ru2LHmoy3GdkZEg6FsBXrFihs88+u9FtOcXFxc1ObBiGqqqqPMdOp1OGYRw35sILL1THjh0VFRWlPn36yOFw6IILLjipiwEAAACCWZPhftGiRa2aOCEhQQ6HQ5WVlTIMQyUlJZo3b16jMSNGjFBJSYnGjx+v7777Tg6Hw3OPPgAAAADvNPlRmL1791bv3r311FNPeX7+6TkroaGhysnJUWZmptLS0jRy5EjFxsYqLy9PpaWlkqTLLrtMZ555ptLS0nTddddpxowZ6tatm88uDgAAAAgmlvfcV1RUNDp2uVzatm1biyZPTExUYmJio3NZWVmen202m7Kzs5Wdnd2i+QAAAAA0rclw/8wzz2jRokWqq6vTRRddJEkyTVNhYWG68sor26xAAAAAAC3TZLi/+eabdfPNN2vevHl8cywAAABwCmgy3P94680f/vCHE96G069fP/9VBQAAAMBrTYb7OXPmSJLq6+u1detWz+fcf/7554qPj9dLL73UNhUCAAAAaJEmw/3SpUslSdOnT9eKFSs84X7Hjh1asGBB21QHAAAAoMWa/CjMH3311VeNvp22b9+++vLLL/1aFAAAAADvWX4U5nnnnacHHnhAV1xxhaRj30z707APAAAA4JfBMtw//vjjeuGFF7RkyRJJ0qBBgzR58mS/FwYAAADAO5bhvlOnTrr++ut1/fXXt0E5AAAAAE5Wk+E+KytLeXl5ysjIOOHjxcXFfisKAAAAgPeaDPcPPPCAJGnRokVtVgwAAACAk9dkuO/Zs6ck6d1339WgQYPUp0+ftqoJAAAAwEmwvOf+66+/Vk5Ojvbs2aN+/fpp0KBBGjhwoOLi4tqiPgAAAAAtZBnub7/9dklSbW2tXn75ZT377LOaPXu27Ha734sDAAAA0HKWX2L197//XZmZmbrhhhu0a9cuzZgxQxs2bGjR5GVlZUpNTVVKSory8/ObHLd27Vqdd955+vTTT1teOQAAAIBGLF+5f/PNN9WhQwcNGzZMgwYN0oABAxQWFmY5scvlUm5urgoLC2UYhiZMmKCkpCTFxMQ0Gnfo0CEtWbJEF1544clfBQAAAADrV+5fffVVLV68WAkJCXr33XeVkZHRoi+xKi8vV3R0tKKiohQWFqb09HSVlpYeNy4vL0833nijOnXqdHJXAAAAAEBSC16537Fjhz766CN9+OGH2rp1qyIjIzVw4EDLiZ1OpyIjIz3HhmGovLy80Zht27apqqpKw4YN07PPPtuigt1ud7vc719bW8u6ASDY+qc916aHfCvY9pH+8a1g20f6x7eCcR9P5R6yDPfz5s3TwIEDNWXKFCUkJKhjx44+WdjtdmvOnDl6/PHHvXpeSEhIu3xSj91uZ902Wtefgq1/2nNtesi3gnEf6R/fCcZ9pH98J9j2sT3X9kUPWYb7Z5555qQmNgxDVVVVnmOn0ynDMDzHhw8f1o4dO3TttddKkvbv369p06Zp4cKFSkhIOKk1AQAAgGBmGe5PVkJCghwOhyorK2UYhkpKSjRv3jzP4+Hh4Xr//fc9x1OmTNGMGTMI9gAAAMBJ8lu4Dw0NVU5OjjIzM+VyuTR+/HjFxsYqLy9P8fHxSk5O9tfSAAAAQFDyW7iXpMTERCUmJjY6l5WVdcKxS5cu9WcpAAAAQMBrMtzfcsstzT5x0aJFPi8GAAAAwMlrMtzfcMMNbVkHAAAAgFZqMtz/9re/bcs6AAAAALSS5T33DodD8+fPV0VFherq6jznT/RtswAAAADaT4jVgOzsbE2ePFkdOnTQkiVLNGbMGF1xxRVtURsAAAAAL1iG+7q6Og0ZMkSS1Lt3b912223asGGD3wsDAAAA4B3L23LCwsLkdrsVHR2toqIiGYahw4cPt0VtAAAAALxg+cr9/fffr6NHj+rBBx/Utm3btGrVKv3lL39pi9oAAAAAeMHylfsLLrhAkmSaph544AGdccYZfi8KAAAAgPcsw/2nn36q+++/33MrzhlnnKHZs2crPj7e78UBAAAAaDnLcH///ffroYce0sCBAyVJH330kbKzs1VcXOz34gAAAAC0nOU99x06dPAEe0kaOHCgQkMt/04AAAAAoI1ZpvRBgwYpJydH6enpstlsWrNmjX77299q27ZtkqR+/fr5vUgAAAAA1izD/WeffSZJWrBgQaPz27dvl81m05IlS/xTGQAAAACvWIb7pUuXtkUdAAAAAFrJ8p77b775Rvfff78yMzMlSRUVFVq2bFmLJi8rK1NqaqpSUlKUn59/3OOFhYVKS0tTRkaGrrvuOu3Zs8fL8gEAAAD8yDLcz5w5U5deeqn27dsnSerTp0+LbsVxuVzKzc1VQUGBSkpKtHr1alVUVDQaExcXp1deeUXFxcVKTU3VE088cZKXAQAAAMAy3FdXVystLU0hIceGhoaGen5uTnl5uaKjoxUVFaWwsDClp6ertLS00ZjBgwerS5cukqT+/furqqrqZK4BAAAAgFpwz/1pp52m6upq2Ww2SdKWLVsUHh5uObHT6VRkZKTn2DAMlZeXNzl++fLlGjp0qOW8brdbdrvdcpyv1dbWsm4ACLb+ac+16SHfCrZ9pH98K9j2kf7xrWDcx1O5hyzD/cyZMzVt2jTt2rVLkyZNUnV1tfLy8nxaxKpVq7R161YVFRVZjg0JCVFcXJxP128Ju93Oum20rj8FW/+059r0kG8F4z7SP74TjPtI//hOsO1je67tix6yDPf9+vVTUVGRvvrqK5mmqXPOOUcdO3a0nNgwjEa32TidThmGcdy4d999V4sWLVJRUZHCwsK8LB8AAADAjyxvnn/99ddVW1ur2NhYvfXWW7rzzjs9X2DVnISEBDkcDlVWVqq+vl4lJSVKSkpqNGb79u3KycnRwoUL1aNHj5O/CgAAAADW4f7vf/+7zjjjDH300UfauHGjJkyYoIcffthy4tDQUOXk5CgzM1NpaWkaOXKkYmNjlZeX53lj7dy5c3XkyBFlZWVp9OjRuuWWW1p9QQAAAECwsrwtp0OHDpKkDRs26Morr9SwYcP01FNPtWjyxMREJSYmNjqXlZXl+Xnx4sUtrxQAAABAsyxfuTcMQzk5OVqzZo0SExNVX18vt9vdFrUBAAAA8IJluH/qqad06aWX6tlnn1XXrl114MABzZgxoy1qAwAAAOAFy9tyunTpossvv9xz3LNnT/Xs2dOvRQEAAADwnvVXzQIAAAA4JRDuAQAAgABBuAcAAAACBOEeAAAACBCEewAAACBAEO4BAACAAEG4BwAAAAIE4R4AAAAIEIR7AAAAIEAQ7gEAAIAAQbgHAAAAAoRfw31ZWZlSU1OVkpKi/Pz84x6vr6/XHXfcoZSUFE2cOFG7d+/2ZzkAAABAQPNbuHe5XMrNzVVBQYFKSkq0evVqVVRUNBqzbNkyde3aVW+++aauv/56Pfnkk/4qBwAAAAh4fgv35eXlio6OVlRUlMLCwpSenq7S0tJGY9avX6+xY8dKklJTU7Vx40aZpumvkgAAAICAFuqviZ1OpyIjIz3HhmGovLz8uDG9evU6VkhoqMLDw1VdXa3u3bs3Oa/NZpPdbvdP0RZY1//q6ur8On8w9k97rk0P+Rbr+h/9w7qtQf8EzrrttbYveshv4d5f+vfv394l4BRG/6C16CG0Bv2D1qB/0BJ+uy3HMAxVVVV5jp1OpwzDOG7M119/LUlqaGhQTU2NunXr5q+SAAAAgIDmt3CfkJAgh8OhyspK1dfXq6SkRElJSY3GJCUl6dVXX5UkrV27VoMHD5bNZvNXSQAAAEBAs5l+fAfrhg0bNHv2bLlcLo0fP17Tpk1TXl6e4uPjlZycrLq6Ot17772y2+2KiIjQX//6V0VFRfmrHAAAACCg+TXcAwAAAGg7fEMtAAAAECAI9wAAAECAINwDAAAAAYJwDwAAAAQIwj0AAAAQIAj3AAAAQIAg3AMAAAABgnAPAAAABAjCPQAAABAgCPcAAABAgCDcAwAAAAGCcA8AAAAECMI9AAAAECAI9wAAAECA8Fu4z87O1pAhQzRq1KgTPm6aph599FGlpKQoIyND27Zt81cpAAAAQFDwW7gfN26cCgoKmny8rKxMDodD69at06xZs/Twww/7qxQAAAAgKPgt3A8aNEgRERFNPl5aWqoxY8bIZrOpf//+OnjwoPbt2+evcgAAAICAF9peCzudTkVGRnqOIyMj5XQ61bNnz2aft2nTJoWEtP1bBdxuN+u2gR//sucvwdY/7bk2PeRbwbaP9I9vBds+0j++FWz72J5r+6KH2i3cn6yQkBANGDCgzde12+2Ki4tj3TZY15+CrX/ac216yLeCcR/pH98Jxn2kf3wn2PaxPdf2RQ+126flGIahqqoqz3FVVZUMw2ivcgAAAIBTXruF+6SkJK1cuVKmaWrLli0KDw+3vCUHAAAAQNP8dlvOXXfdpQ8++EDV1dUaOnSobrvtNjU0NEiSJk+erMTERG3YsEEpKSnq0qWLZs+e7a9SAAAAgKDgt3A/f/78Zh+32Wx66KGH/LU8AAAAEHT4hloAAAAgQBDuAQAAgABBuAcAAAACBOEeAAAACBCEewAAACBAEO4BAACAAEG4BwAAAAIE4R4AAAAIEIR7AAAAIEAQ7gEAAIAAQbgHAAAAAgThHgAAAAgQoVYDPv30U23atElOp1OdO3dWbGysLrnkEkVERLRFfQAAAABaqMlw/8orr6ioqEhnn322+vXrp9/85jeqq6vTxx9/rIKCAsXGxiorK0tnnXVWW9YLAAAAoAlNhvva2lq98MIL6ty58wkft9vt2rlzJ+EeAAAA+IVo8p77q6++uslgL0lxcXEaMmRIs5OXlZUpNTVVKSkpys/PP+7xvXv3asqUKRozZowyMjK0YcMGL0oHAAAA8FOW99xXVlaqqKhIe/bsUUNDg+f8okWLmn2ey+VSbm6uCgsLZRiGJkyYoKSkJMXExHjGLFy4UCNHjtRVV12liooK3XTTTVq/fn0rLgcAAAAIXpbh/r/+6780YcIEDR8+XCEhLf9wnfLyckVHRysqKkqSlJ6ertLS0kbh3maz6dChQ5Kkmpoa9ezZ09v6AQAAAPz/LMN9p06ddO2113o9sdPpVGRkpOfYMAyVl5c3GjN9+nRNnTpVRUVFOnr0qAoLCy3ndbvdstvtXtfTWrW1tawbAIKtf9pzbXrIt4JtH+kf3wq2faR/fCsY9/FU7iHLcH/ttddqwYIFuuSSSxQWFuY5369fv1YvXlJSorFjx+qGG27Q5s2bNWPGDK1evbrZfyEICQlRXFxcq9f2lt1uZ902Wtefgq1/2nNtesi3gnEf6R/fCcZ9pH98J9j2sT3X9kUPWYb7HTt2aNWqVXrvvfdks9kkHbudZsmSJc0+zzAMVVVVeY6dTqcMw2g0Zvny5SooKJAkDRgwQHV1daqurlaPHj28vhAAAAAg2FmG+zfeeENvvfVWo1ftWyIhIUEOh0OVlZUyDEMlJSWaN29eozG9evXSxo0bNW7cOH355Zeqq6tT9+7dvbsCAAAAAJJaEO5jY2NVU1Pj9avpoaGhysnJUWZmplwul8aPH6/Y2Fjl5eUpPj5eycnJmjlzph588EEtXrxYNptNc+bM8fzrAAAAAADvWIb7mpoajRw5UgkJCerYsaPnvNVHYUpSYmKiEhMTG53Lysry/BwTE6MXX3zRm3oBAAAANMEy3N92221tUQcAAACAVrIM97169VLPnj3VqVMnScc+Guibb77xe2EAAAAAvGP5rVRZWVmN7oMPCQlpdGsNAAAAgF8Gy3DvcrkafVJOWFiYfvjhB78WBQAAAMB7luG+e/fuKi0t9Ry/9dZb6tatm1+LAgAAAOA9y3vuH3nkEd1zzz2aNWuWJCkyMlJz5871e2EAAAAAvGMZ7n/961/r5Zdf1uHDhyVJp59+ut+LAgAAAOC9Jm/LWbVqldxut+f49NNPbxTsd+3apY8++si/1QEAAABosSZfuT9w4IDGjBmjfv36KT4+Xt26dVN9fb127typDz/8UN26ddPdd9/dlrUCAAAAaEaT4f66667TNddco/fee08ff/yxPv/8c3Xq1Ennnnuu5s6dq7POOqst6wQAAABgodl77jt06KBLLrlEl1xySVvVAwAAAOAkWX4UJgAAAIBTA+EeAAAACBCEewAAACBAWH7OfX19vdauXas9e/aooaHBc3769OmWk5eVlemxxx6T2+3WxIkTddNNNx03Zs2aNVqwYIFsNpvOP/98zZs3z8tLAAAAACC1INxPmzZN4eHh6tevn8LCwlo8scvlUm5urgoLC2UYhiZMmKCkpCTFxMR4xjgcDuXn5+uFF15QRESEvv3225O7CgAAAADW4d7pdOrZZ5/1euLy8nJFR0crKipKkpSenq7S0tJG4f7ll1/W1VdfrYiICElSjx49vF4HAAAAwDGW4X7AgAH6/PPPdd5553k1sdPpVGRkpOfYMAyVl5c3GuNwOCRJkyZNktvt1vTp0zV06NBm53W73bLb7V7V4gu1tbWsGwCCrX/ac216yLeCbR/pH98Ktn2kf3wrGPfxVO6hJsN9RkaGpGO316xYsUJnn312o9tyiouLW724y+XSzp07tXTpUlVVVemaa65RcXGxunbt2uRzQkJCFBcX1+q1vWW321m3jdb1p2Drn/Zcmx7yrWDcR/rHd4JxH+kf3wm2fWzPtX3RQ02G+0WLFrVqYsMwVFVV5Tl2Op0yDOO4MRdeeKE6duyoqKgo9enTRw6HQxdccEGr1gYAAACCUZMfhdm7d2/17t1bTz31lOfnn56zkpCQIIfDocrKStXX16ukpERJSUmNxowYMUIffPCBJOm7776Tw+Hw3KMPAAAAwDuW99xXVFQ0Ona5XNq2bZv1xKGhysnJUWZmplwul8aPH6/Y2Fjl5eUpPj5eycnJuuyyy/Tvf/9baWlp6tChg2bMmKFu3bqd/NUAAAAAQazJcP/MM89o0aJFqqur00UXXSRJMk1TYWFhuvLKK1s0eWJiohITExudy8rK8vxss9mUnZ2t7Ozsk6kdAAAAwE80Ge5vvvlm3XzzzZo3b57uvvvutqwJAAAAwEmwvC3nD3/4w3G34YSHh+uss85SaKjl0wEAAAC0Ect0/sgjj2j79u3q27evJGnHjh2KjY1VTU2NHn74YV166aV+LxIAAACAtSY/LedHPXv21KuvvqoVK1ZoxYoVWrlypaKiolRYWKgnnniiLWoEAAAA0AKW4d7hcCg2NtZzHBMTo//93//lIysBAACAXxjL23JiYmL00EMPKT09XZK0Zs0anXvuuaqvr+eeewAAAOAXxDKdz5kzR88//7z+3//7f5Kkiy66SPfdd59CQ0O1ZMkSvxcIAAAAoGUsw33nzp11ww036IYbbjjusdNPP90vRQEAAADwnmW437RpkxYsWKC9e/eqoaHBc760tNSvhQEAAADwjmW4f+CBB5Sdna34+HiFhFi+/xYAAABAO7EM9+Hh4UpMTGyLWgAAAAC0gmW4/93vfqe//OUvuvzyyxUWFuY5369fP78WBgAAAMA7luH+k08+kSRt3brVc85ms/FJOQAAAMAvjGW4X7p0aVvUAQAAAKCVLN8h+8033+j+++9XZmamJKmiokLLli3ze2EAAAAAvGMZ7mfOnKlLL71U+/btkyT16dOnxbfklJWVKTU1VSkpKcrPz29y3Nq1a3Xeeefp008/bWHZAAAAAH7OMtxXV1crLS3N8zGYoaGhLfpITJfLpdzcXBUUFKikpESrV69WRUXFceMOHTqkJUuW6MILLzyJ8gEAAAD8yDKln3baaaqurpbNZpMkbdmyReHh4ZYTl5eXKzo6WlFRUQoLC1N6evoJv/gqLy9PN954ozp16nQS5QMAAAD4keUbamfOnKlp06Zp165dmjRpkqqrq5WXl2c5sdPpVGRkpOfYMAyVl5c3GrNt2zZVVVVp2LBhevbZZ1tUsNvtlt1ub9FYX6qtrWXdABBs/dOea9NDvhVs+0j/+Faw7SP941vBuI+ncg9Zhvt+/fqpqKhIX331lUzT1DnnnKOOHTu2emG32605c+bo8ccf9+p5ISEhiouLa/X63rLb7azbRuv6U7D1T3uuTQ/5VjDuI/3jO8G4j/SP7wTbPrbn2r7ooSbD/bp160543uFwSJIuv/zyZic2DENVVVWeY6fTKcMwPMeHDx/Wjh07dO2110qS9u/fr2nTpmnhwoVKSEho8QUAAAAAOKbJcP/22283+0SrcJ+QkCCHw6HKykoZhqGSkhLNmzfP83h4eLjef/99z/GUKVM0Y8YMgj0AAABwkpoM997eLnPcxKGhysnJUWZmplwul8aPH6/Y2Fjl5eUpPj5eycnJrZofAAAAQGOW99y3RmJiohITExudy8rKOuFYvgkXAAAAaB3rD6wHAAAAcEog3AMAAAABwutPy/mR1RtqAQAAALQtv31aDgAAAIC25bdPywEAAADQtlr0aTnvvPOOvvjiC9XV1XnOTZ8+3W9FAQAAAPCe5Rtqc3JytGbNGhUVFUmS1q5dq7179/q9MAAAAADesQz3mzdv1ty5c9W1a1dNnz5dL774ohwORxuUBgAAAMAbluG+c+fOkqQuXbrI6XSqY8eO2r9/v98LAwAAAOAdy3vuhw0bpoMHD2rq1KkaN26cbDabJkyY0Ba1AQAAAPCCZbi/8cYbFRYWptTUVA0fPlx1dXXq1KlTW9QGAAAAwAuWt+X88Y9/9PwcFham8PDwRucAAAAA/DI0+cr9/v375XQ6VVtbq+3bt8s0TUnSoUOHdPTo0TYrEAAAAEDLNBnu//Wvf2nFihWqqqpq9IVWZ5xxhu666642KQ4AAABAyzUZ7seOHauxY8dq7dq1Sk1NPanJy8rK9Nhjj8ntdmvixIm66aabGj1eWFioZcuWqUOHDurevbtmz56t3r17n9RaAAAAQLCzvOf+oosu0v3336/MzExJUkVFhZYtW2Y5scvlUm5urgoKClRSUqLVq1eroqKi0Zi4uDi98sorKi4uVmpqqp544omTvAwAAAAAluE+Oztbl156qfbt2ydJ6tOnj5YsWWI5cXl5uaKjoxUVFaWwsDClp6ertLS00ZjBgwerS5cukqT+/furqqrqZK4BAAAAgFrwUZjV1dVKS0tTfn7+sSeEhiokxPLvBHI6nYqMjPQcG4ah8vLyJscvX75cQ4cOtZzX7XbLbrdbjvO12tpa1g0AwdY/7bk2PeRbwbaP9I9vBds+0j++FYz7eCr3kGW4P+2001RdXS2bzSZJ2rJli8LDw31axKpVq7R161YVFRVZjg0JCVFcXJxP128Ju93Oum20rj8FW/+059r0kG8F4z7SP74TjPtI//hOsO1je67tix6yDPczZ87UtGnTtGvXLk2aNEnV1dXKy8uznNgwjEa32TidThmGcdy4d999V4sWLVJRUZHCwsK8LB8AAADAjyzDfb9+/VRUVKSvvvpKpmnqnHPOUceOHS0nTkhIkMPhUGVlpQzDUElJiebNm9dozPbt25WTk6OCggL16NHj5K8CAAAAgHW4r6ur0/PPP69NmzbJZrPp4osv1uTJk9WpU6fmJw4NVU5OjjIzM+VyuTR+/HjFxsYqLy9P8fHxSk5O1ty5c3XkyBFlZWVJknr16qVFixb55soAAACAIGMZ7mfMmKHTTz9d11xzjSRp9erVuvfee/X0009bTp6YmKjExMRG534M8pK0ePFiL8sFAAAA0BTLcP/FF19ozZo1nuPBgwcrLS3Nr0UBAAAA8J7lZ1r+53/+p7Zs2eI5/uSTTxQfH+/PmgAAAACcBMtX7rdt26ZJkybprLPOkiTt3btX55xzjjIyMiRJxcXF/q0QAAAAQItYhvuCgoK2qAMAAABAK1mG+969e7dFHQAAAABayfKeewAAAACnBsI9AAAAECAI9wAAAECAINwDAAAAAYJwDwAAAAQIwj0AAAAQIAj3AAAAQIAg3AMAAAABgnAPAAAABAjCPQAAABAg/Bruy8rKlJqaqpSUFOXn5x/3eH19ve644w6lpKRo4sSJ2r17tz/LAQAAAAKa38K9y+VSbm6uCgoKVFJSotWrV6uioqLRmGXLlqlr16568803df311+vJJ5/0VzkAAABAwPNbuC8vL1d0dLSioqIUFham9PR0lZaWNhqzfv16jR07VpKUmpqqjRs3yjRNf5UEAAAABLRQf03sdDoVGRnpOTYMQ+Xl5ceN6dWr17FCQkMVHh6u6upqde/evcl5bTab7Ha7f4q2wLr+V1dX59f5g7F/2nNtesi3WNf/6B/WbQ36J3DWba+1fdFDfgv3/tK/f//2LgGnMPoHrUUPoTXoH7QG/YOW8NttOYZhqKqqynPsdDplGMZxY77++mtJUkNDg2pqatStWzd/lQQAAAAENL+F+4SEBDkcDlVWVqq+vl4lJSVKSkpqNCYpKUmvvvqqJGnt2rUaPHiwbDabv0oCAAAAAprN9OM7WDds2KDZs2fL5XJp/PjxmjZtmvLy8hQfH6/k5GTV1dXp3nvvld1uV0REhP76178qKirKX+UAAAAAAc2v4R4AAABA2+EbagEAAIAAQbgHAAAAAgThHgAAAAgQhHsAAAAgQBDuAQAAgABBuAcAAAACBOEeAAAACBCEewAAACBAEO4BAACAAEG4BwAAAAIE4R4AAAAIEIR7AAAAIEAQ7gEAAIAAQbgHAAAAAoTfwn12draGDBmiUaNGnfBx0zT16KOPKiUlRRkZGdq2bZu/SgEAAACCgt/C/bhx41RQUNDk42VlZXI4HFq3bp1mzZqlhx9+2F+lAAAAAEHBb+F+0KBBioiIaPLx0tJSjRkzRjabTf3799fBgwe1b98+f5UDAAAABLzQ9lrY6XQqMjLScxwZGSmn06mePXs2+7xNmzYpJKTt3yrgdrtZtw38+Jc9fwm2/mnPtekh3wq2faR/fCvY9pH+8a1g28f2XNsXPdRu4f5khYSEaMCAAW2+rt1uV1xcHOu2wbr+FGz9055r00O+FYz7SP/4TjDuI/3jO8G2j+25ti96qN0+LccwDFVVVXmOq6qqZBhGe5UDAAAAnPLaLdwnJSVp5cqVMk1TW7ZsUXh4uOUtOQAAAACa5rfbcu666y598MEHqq6u1tChQ3XbbbepoaFBkjR58mQlJiZqw4YNSklJUZcuXTR79mx/lQIAAAAEBb+F+/nz5zf7uM1m00MPPeSv5QEAAICgwzfUAgAAAAGCcA8AAAAECMI9AAAAECAI9wAAAECAINwDAAAAAYJwDwAAAAQIwj0AAAAQIAj3AAAAQIAg3AMAAAABgnAPAAAABAjCPQAAABAgCPcAAABAgCDcAwAAAAGCcA8AAAAEiBaF+++//15ffPGFKisr5Xa7Wzx5WVmZUlNTlZKSovz8/OMe37t3r6ZMmaIxY8YoIyNDGzZsaHnlAAAAABoJbeqBmpoaPffccyopKVF9fb26d++uuro6ffvtt7rwwgt11VVXafDgwU1O7HK5lJubq8LCQhmGoQkTJigpKUkxMTGeMQsXLtTIkSN11VVXqaKiQjfddJPWr1/v2ysEAAAAgkST4f7222/X6NGj9dxzz6lr166NHtu6datWrVqlyspKTZw48YTPLy8vV3R0tKKioiRJ6enpKi0tbRTubTabDh06JOnYXyZ69uzZ6gsCAAAAgpXNNE3THxO/8cYb+uc//6nHHntMkrRy5UqVl5crJyfHM2bfvn2aOnWqvv/+ex09elSFhYWKj49vdt5NmzbptNNO80fJzaqtrVXnzp1Ztw3ExcX5be5g65/2XJse8q1g20f6x7eCbR/pH98Kxn08lXuoyVfuf+qzzz7Tnj175HK5POcuv/zyVi0sSSUlJRo7dqxuuOEGbd68WTNmzNDq1asVEtL0WwFCQkL8+h9OU+x2O+u20br+FGz9055r00O+FYz7SP/4TjDuI/3jO8G2j+25ti96yDLcZ2dn6/PPP1dsbGyj0G0V7g3DUFVVlefY6XTKMIxGY5YvX66CggJJ0oABA1RXV6fq6mr16NHDq4sAAAAA0IJw/8knn2jNmjVeT5yQkCCHw6HKykoZhqGSkhLNmzev0ZhevXpp48aNGjdunL788kvV1dWpe/fuXq8FAAAAoAXhvn///qqoqGj0RtgWTRwaqpycHGVmZsrlcmn8+PGKjY1VXl6e4uPjlZycrJkzZ+rBBx/U4sWLZbPZNGfOHNlstpO+GAAAACCYWYb7MWPG6I9//KP+4z/+Q2FhYZ7zxcXFlpMnJiYqMTGx0bmsrCzPzzExMXrxxRe9qRcAAABAEyzD/QMPPKC5c+eqb9++zb7RFQAAAED7sgz33bt3V3JyclvUAgAAAKAVLMN9XFyc7r77bg0fPrzRbTm++ChMAAAAAL5jGe7r6uoUFhamf//7343OE+4BAACAXxbLcP/444+3RR0AAAAAWsnyHbL33XefDh486Dn+/vvvlZ2d7deiAAAAAHjPMtx//vnn6tq1q+c4IiLC71+vDAAAAMB7luHe7Xbr+++/9xwfOHBALpfLr0UBAAAA8J7lPfc33HCD/vjHP+oPf/iDJOmNN97QLbfc4vfCAAAAAHinRd9QGx8fr/fee0+StGDBAsXExPi9MAAAAADeaTLcHz58WKeffrokKSYm5oSB/qdjAAAAALSvJu+5v/XWWzVnzhx9+OGHOnLkiOd8ZWWlli1bpqlTp+qf//xnmxQJAAAAwFqTr9z/v//3/7Rhwwa9+OKL2rx5sw4cOKCOHTvqnHPOUWJioubMmaNf/epXbVkrAAAAgGY0e899YmKiEhMT26oWAAAAAK1g+VGYAAAAAE4Nfg33ZWVlSk1NVUpKivLz8084Zs2aNUpLS1N6erruvvtuf5YDAAAABDTLj8I8WS6XS7m5uSosLJRhGJowYYKSkpIafeqOw+FQfn6+XnjhBUVEROjbb7/1VzkAAABAwGtRuHe5XPrmm28afTPtWWed1exzysvLFR0draioKElSenq6SktLG4X7l19+WVdffbUiIiIkST169PD6AgAAAAAcYxnuly5dqgULFug//uM/FBLyf3fxFBcXN/s8p9OpyMhIz7FhGCovL280xuFwSJImTZokt9ut6dOna+jQoc3O63a7Zbfbrcr2udraWtYNAMHWP+25Nj3kW8G2j/SPbwXbPtI/vhWM+3gq95BluF+yZIneeOMNdevWzeeLu1wu7dy5U0uXLlVVVZWuueYaFRcXq2vXrk0+JyQkRHFxcT6vxYrdbmfdNlrXn4Ktf9pzbXrIt4JxH+kf3wnGfaR/fCfY9rE91/ZFD1m+oTYyMlLh4eFeT2wYhqqqqjzHTqdThmEcNyYpKUkdO3ZUVFSU+vTp43k1HwAAAIB3mnzlvrCwUJIUFRWlKVOmaNiwYQoLC/M8/qc//anZiRMSEuRwOFRZWSnDMFRSUqJ58+Y1GjNixAiVlJRo/Pjx+u677+RwODz36AMAAADwTpPh/vDhw5KOvXH2rLPO0g8//KAffvih5ROHhionJ0eZmZlyuVwaP368YmNjlZeXp/j4eCUnJ+uyyy7Tv//9b6WlpalDhw6aMWOGX27/AQAAAIJBk+F++vTpkqTXX39dI0eObPTY66+/3qLJT/QNt1lZWZ6fbTabsrOzlZ2d3eKCAQAAAJyY5T33J/ryqaa+kAoAAABA+2nylfsNGzaorKxMTqdTjz76qOf8oUOH1KFDhzYpDgAAAEDLNRnuDcNQv379tH79evXr189z/vTTT+c2GgAAAOAXqMlwf/755+v8889XRkaGOnbs2JY1AQAAADgJTYb7jIyMZp9o9Q21AAAAANpWk+F+0aJFkqTnnntOkjR69GhJ0muvvSabzdYGpQEAAADwRpPhvnfv3pKkd999VytXrvScv/feezV27Fjdc889fi8OAAAAQMtZfhSmaZratGmT5/jjjz+W2+32a1EAAAAAvNfkK/c/euyxx3T//ffr0KFDMk1TXbt21ezZs9uiNgAAAABesAz38fHxeu2111RTUyNJCg8P93tRAAAAALzXZLhftWqVRo8ercLCwhM+/qc//clvRQEAAADwXpPh/ujRo5Kkw4cPt1kxAAAAAE5ek+F+0qRJkqQbb7xRnTp1arOCAAAAAJwcy3vuR40apR49emjgwIEaOHCgLr74Yu67BwAAAH6BLD8K880339T8+fPVt29fvfPOOxo9erTnC62slJWVKTU1VSkpKcrPz29y3Nq1a3Xeeefp008/bXnlAAAAABqxfOW+qqpKH3/8sT766CN9/vnniomJ0cUXX2w5scvlUm5urgoLC2UYhiZMmKCkpCTFxMQ0Gnfo0CEtWbJEF1544clfBQAAAADrcD9s2DAlJCTo5ptvVm5ubosnLi8vV3R0tKKioiRJ6enpKi0tPS7c5+Xl6cYbb9Szzz7rZekAAAAAfsoy3K9cuVKbNm3S6tWr9T//8z+Kjo7WoEGDNHHixGaf53Q6FRkZ6Tk2DEPl5eWNxmzbtk1VVVUaNmxYi8O92+2W3W5v0Vhfqq2tZd0AEGz9055r00O+FWz7SP/4VrDtI/3jW8G4j6dyD1mG+/PPP19RUVGKiorSpk2b9Nprr+nDDz+0DPdW3G635syZo8cff9yr54WEhCguLq5Va58Mu93Oum20rj8FW/+059r0kG8F4z7SP74TjPtI//hOsO1je67tix6yDPfjxo3TDz/8oAEDBujiiy9WUVGRevfubTmxYRiqqqryHDudThmG4Tk+fPiwduzYoWuvvVaStH//fk2bNk0LFy5UQkLCyVwLAAAAENQsw31BQYG6d+/u9cQJCQlyOByqrKyUYRgqKSnRvHnzPI+Hh4fr/fff9xxPmTJFM2bMINgDAAAAJ8ky3J9MsJek0NBQ5eTkKDMzUy6XS+PHj1dsbKzy8vIUHx+v5OTkk5oXAAAAwIlZhvvWSExMVGJiYqNzWVlZJxy7dOlSf5YCAAAABDzLL7ECAAAAcGpo8pX7devWNfvEyy+/3OfFAAAAADh5TYb7t99+u9knEu4BAACAX5Ymw723nz8PAAAAoH216A2177zzjr744gvV1dV5zk2fPt1vRQEAAADwnuUbanNycrRmzRoVFRVJktauXau9e/f6vTAAAAAA3rEM95s3b9bcuXPVtWtXTZ8+XS+++KIcDkcblAYAAADAG5bhvnPnzpKkLl26yOl0qmPHjtq/f7/fCwMAAADgHct77ocNG6aDBw9q6tSpGjdunGw2myZMmNAWtQEAAADwgmW4v/HGGxUWFqbU1FQNHz5cdXV16tSpU1vUBgAAAMALlrfl/PGPf/T8HBYWpvDw8EbnAAAAAPwyNPnK/f79++V0OlVbW6vt27fLNE1J0qFDh3T06NE2KxAAAABAyzQZ7v/1r39pxYoVqqqqavSFVmeccYbuuuuuNikOAAAAQMs1Ge7Hjh2rsWPHau3atUpNTW3LmgAAAACcBMt77i+66CLdf//9yszMlCRVVFRo2bJlfi8MAAAAgHcsw312drYuvfRS7du3T5LUp08fLVmypEWTl5WVKTU1VSkpKcrPzz/u8cLCQqWlpSkjI0PXXXed9uzZ42X5AAAAAH5kGe6rq6uVlpamkJBjQ0NDQz0/N8flcik3N1cFBQUqKSnR6tWrVVFR0WhMXFycXnnlFRUXFys1NVVPPPHESV4GAAAAAMuUftppp6m6ulo2m02StGXLFoWHh1tOXF5erujoaEVFRSksLEzp6ekqLS1tNGbw4MHq0qWLJKl///6qqqo6mWsAAAAAoBZ8idXMmTM1bdo07dq1S5MmTVJ1dbXy8vIsJ3Y6nYqMjPQcG4ah8vLyJscvX75cQ4cOtZzX7XbLbrdbjvO12tpa1g0AwdY/7bk2PeRbwbaP9I9vBds+0j++FYz7eCr3kGW479evn4qKivTVV1/JNE2dc8456tixo0+LWLVqlbZu3aqioiLLsSEhIYqLi/Pp+i1ht9tZt43W9adg65/2XJse8q1g3Ef6x3eCcR/pH98Jtn1sz7V90UOW4b6urk7PP/+8Nm3aJJvNposvvliTJ09Wp06dmn2eYRiNbrNxOp0yDOO4ce+++64WLVqkoqIihYWFncQlAAAAAJBacM/9jBkz9MUXX+iaa67R1VdfrYqKCt17772WEyckJMjhcKiyslL19fUqKSlRUlJSozHbt29XTk6OFi5cqB49epz8VQAAAACwfuX+iy++0Jo1azzHgwcPVlpamvXEoaHKyclRZmamXC6Xxo8fr9jYWOXl5Sk+Pl7JycmaO3eujhw5oqysLElSr169tGjRolZcDgAAABC8LMP9f/7nf2rLli3q37+/JOmTTz5RfHx8iyZPTExUYmJio3M/BnlJWrx4ccsrBQAAANAsy3C/bds2TZo0SWeddZYkae/evTrnnHOUkZEhSSouLvZvhQAAAABaxDLcFxQUtEUdAAAAAFrJMtz37t27LeoAAAAA0EqWn5YDAAAA4NRAuAcAAAACBOEeAAAACBCEewAAACBAEO4BAACAAEG4BwAAAAIE4R4AAAAIEIR7AAAAIEAQ7gEAAIAAQbgHAAAAAgThHgAAAAgQfg33ZWVlSk1NVUpKivLz8497vL6+XnfccYdSUlI0ceJE7d6925/lAAAAAAHNb+He5XIpNzdXBQUFKikp0erVq1VRUdFozLJly9S1a1e9+eabuv766/Xkk0/6qxwAAAAg4Pkt3JeXlys6OlpRUVEKCwtTenq6SktLG41Zv369xo4dK0lKTU3Vxo0bZZqmv0oCAAAAAlqovyZ2Op2KjIz0HBuGofLy8uPG9OrV61ghoaEKDw9XdXW1unfv3uS8NptNdrvdP0VbYF3/q6ur8+v8wdg/7bk2PeRbrOt/9A/rtgb9Ezjrttfavughv4V7f+nfv397l4BTGP2D1qKH0Br0D1qD/kFL+O22HMMwVFVV5Tl2Op0yDOO4MV9//bUkqaGhQTU1NerWrZu/SgIAAAACmt/CfUJCghwOhyorK1VfX6+SkhIlJSU1GpOUlKRXX31VkrR27VoNHjxYNpvNXyUBAAAAAc1m+vEdrBs2bNDs2bPlcrk0fvx4TZs2TXl5eYqPj1dycrLq6up07733ym63KyIiQn/9618VFRXlr3IAAACAgObXcA8AAACg7fANtQAAAECAINwDAAAAAYJwDwAAAAQIwj0AAAAQIAj3AAAAQIAg3AMAAAABgnAPAAAABAjCPQAAABAgCPcAAABAgCDcAwAAAAGCcA8AAAAECMI9AAAAECAI9wAAAECAINwDAAAAAYJwDwAAAAQIv4X77OxsDRkyRKNGjTrh46Zp6tFHH1VKSooyMjK0bds2f5UCAAAABAW/hftx48apoKCgycfLysrkcDi0bt06zZo1Sw8//LC/SgEAAACCgt/C/aBBgxQREdHk46WlpRozZoxsNpv69++vgwcPat++ff4qBwAAAAh4oe21sNPpVGRkpOc4MjJSTqdTPXv2bPZ5mzZtUkhI279VwO12s24b+PEve/4SbP3TnmvTQ74VbPtI//hWsO0j/eNbwbaP7bm2L3qo3cL9yQoJCdGAAQPafF273a64uDjWbYN1/SnY+qc916aHfCsY95H+8Z1g3Ef6x3eCbR/bc21f9FC7fVqOYRiqqqryHFdVVckwjPYqBwAAADjltVu4T0pK0sqVK2WaprZs2aLw8HDLW3IAAAAANM1vt+Xcdddd+uCDD1RdXa2hQ4fqtttuU0NDgyRp8uTJSkxM1IYNG5SSkqIuXbpo9uzZ/ioFAAAACAp+C/fz589v9nGbzaaHHnrIX8sDAAAAQYdvqAUAAAACBOEeAAAACBCEewAAACBAEO4BAACAAEG4BwAAAAIE4R4AAAAIEIR7AAAAIEAQ7gEAAIAAQbgHAAAAAgThHgAAAAgQhHsAAAAgQBDuAQAAgABBuAcAAAACBOEeAAAACBB+DfdlZWVKTU1VSkqK8vPzj3t87969mjJlisaMGaOMjAxt2LDBn+UAAAAAAS3UXxO7XC7l5uaqsLBQhmFowoQJSkpKUkxMjGfMwoULNXLkSF111VWqqKjQTTfdpPXr1/urJAAAACCg+e2V+/LyckVHRysqKkphYWFKT09XaWlpozE2m02HDh2SJNXU1Khnz57+KgcAAAAIeH575d7pdCoyMtJzbBiGysvLG42ZPn26pk6dqqKiIh09elSFhYWW87rdbtntdp/Xa6W2tpZ1A0Cw9U97rk0P+Vaw7SP941vBto/0j28F4z6eyj3kt3DfEiUlJRo7dqxuuOEGbd68WTNmzNDq1asVEtL0PyiEhIQoLi6uDas8xm63s24bretPwdY/7bk2PeRbwbiP9I/vBOM+0j++E2z72J5r+6KH/HZbjmEYqqqq8hw7nU4ZhtFozPLlyzVy5EhJ0oABA1RXV6fq6mp/lQQAAAAENL+F+4SEBDkcDlVWVqq+vl4lJSVKSkpqNKZXr17auHGjJOnLL79UXV2dunfv7q+SAAAAgIDmt9tyQkNDlZOTo8zMTLlcLo0fP16xsbHKy8tTfHy8kpOTNXPmTD344INavHixbDab5syZI5vN5q+SAAAAgIDm13vuExMTlZiY2OhcVlaW5+eYmBi9+OKL/iwBAAAACBp8Qy0AAAAQIAj3AAAAQIAg3AMAAAABgnAPAAAABAjCPQAAABAgCPcAAABAgCDcAwAAAAGCcA8AAAAECMI9AAAAECAI9wAAAECAINwDAAAAAYJwDwAAAAQIwj0AAAAQIAj3AAAAQIDwa7gvKytTamqqUlJSlJ+ff8Ixa9asUVpamtLT03X33Xf7sxwAAAAgoIX6a2KXy6Xc3FwVFhbKMAxNmDBBSUlJiomJ8YxxOBzKz8/XCy+8oIiICH377bf+KgcAAAAIeJav3FdWVrbo3M+Vl5crOjpaUVFRCgsLU3p6ukpLSxuNefnll3X11VcrIiJCktSjR4+W1g0AAADgZyzD/e23337cuaysLMuJnU6nIiMjPceGYcjpdDYa43A49NVXX2nSpEm68sorVVZW1pKaAQAAAJxAk7flfPnll6qoqFBNTY3WrVvnOX/o0CHV1dX5ZHGXy6WdO3dq6dKlqqqq0jXXXKPi4mJ17dq1yee43W7Z7XafrO+N2tpa1g0AwdY/7bk2PeRbwbaP9I9vBds+0j++FYz7eCr3UJPh/quvvtI777yjmpoavf32257zp59+umbNmmU5sWEYqqqq8hw7nU4ZhnHcmAsvvFAdO3ZUVFSU+vTpI4fDoQsuuKDJeUNCQhQXF2e5vq/Z7XbWbaN1/SnY+qc916aHfCsY95H+8Z1g3Ef6x3eCbR/bc21f9FCT4X7EiBEaMWKENm/erAEDBng9cUJCghwOhyorK2UYhkpKSjRv3rzj1igpKdH48eP13XffyeFwKCoqyvurAAAAAGB9z/2ZZ56p6667TqNGjZIkffbZZ/r73/9uOXFoaKhycnKUmZmptLQ0jRw5UrGxscrLy/O8sfayyy7TmWeeqbS0NF133XWaMWOGunXr1spLAgAAAIKT5Udh/vnPf9aMGTOUk5MjSTr//PN1zz336NZbb7WcPDExUYmJiY3O/fTNuDabTdnZ2crOzva2bgAAAAA/Y/nK/dGjR4+7B75Dhw5+KwgAAADAybEM9926ddOuXbtks9kkSW+88YZ+9atf+b0wAAAAAN6xvC3noYce0p///Gf97//+ry677DKdffbZeuKJJ9qiNgAAAABesAz3UVFRWrx4sY4cOSK3260zzjijLeoCAAAA4CXLcF9YWHjcuTPOOEPx8fHt9tmjAAAAAI5nGe63bt2qrVu3avjw4ZKkt99+W+edd55efPFF/eEPf9CNN97o9yIBAAAAWLMM91VVVVqxYoVOP/10SdJtt92mm2++Wc8995zGjRtHuAcAAAB+ISw/Lefbb79VWFiY57hjx4765ptv1Llz50bnAQAAALQvy1fuMzIydOWVVyo5OVmStH79eo0aNUpHjhzRueee6/cCAQAAALRMs+HeNE2NGzdOQ4cO1ccffyxJeuSRR5SQkCBJmjdvnv8rBAAAANAizYZ7m82mm266ScXFxZ5ADwAAAOCXyfKe+//8z/9UeXl5W9QCAAAAoBUs77n/5JNPVFxcrLPOOktdunTxnC8uLvZrYQAAAAC8Yxnun3322baoAwAAAEArWYb73r17Szr2kZh1dXV+LwgAAADAybG85760tFSXX365kpOTdc011ygpKanFX1xVVlam1NRUpaSkKD8/v8lxa9eu1XnnnadPP/205ZUDAAAAaMQy3Ofl5emll15Snz59tH79ei1evFgXXnih5cQul0u5ubkqKChQSUmJVq9erYqKiuPGHTp0SEuWLGnRnAAAAACaZhnuQ0ND1a1bN7ndbrndbg0ePFhbt261nLi8vFzR0dGKiopSWFiY0tPTVVpaety4vLw83XjjjerUqdPJXQEAAAAASS24575r1646fPiwBg0apHvuuUfdu3fXaaedZjmx0+lUZGSk59gwjOM+UnPbtm2qqqrSsGHDWvzGXbfbLbvd3qKxvlRbW8u6ASDY+qc916aHfCvY9pH+8a1g20f6x7eCcR9P5R6yDPfnn3++unTpouzsbBUXF6umpkZHjhxp9cJut1tz5szR448/7tXzQkJCFBcX1+r1vWW321m3jdb1p2Drn/Zcmx7yrWDcR/rHd4JxH+kf3wm2fWzPtX3RQ5bh/v3331dISIhCQkI0duxYSVJGRoblxIZhqKqqynPsdDplGIbn+PDhw9qxY4euvfZaSdL+/fs1bdo0LVy4kG/DBQAAAE5Ck+H++eef1wsvvKBdu3Y1CvOHDx/WRRddZDlxQkKCHA6HKisrZRiGSkpKNG/ePM/j4eHhev/99z3HU6ZM0YwZMwj2AAAAwElqMtxnZGRo6NChmj9/vu6++27P+dNPP11nnnmm9cShocrJyVFmZqZcLpfGjx+v2NhY5eXlKT4+XsnJyT65AAAAAADHNBnuw8PDFR4ervnz55/05ImJiUpMTGx0Lisr64Rjly5detLrAAAAAGjBR2ECAAAAODUQ7gEAAIAAQbgHAAAAAgThHgAAAAgQhHsAAAAgQBDuAQAAgABBuAcAAAACBOEeAAAACBCEewAAACBAEO4BAACAAEG4BwAAAAIE4R4AAAAIEIR7AAAAIEAQ7gEAAIAA4ddwX1ZWptTUVKWkpCg/P/+4xwsLC5WWlqaMjAxdd9112rNnjz/LAQAAAAKa38K9y+VSbm6uCgoKVFJSotWrV6uioqLRmLi4OL3yyisqLi5WamqqnnjiCX+VAwAAAAQ8v4X78vJyRUdHKyoqSmFhYUpPT1dpaWmjMYMHD1aXLl0kSf3791dVVZW/ygEAAAACXqi/JnY6nYqMjPQcG4ah8vLyJscvX75cQ4cOtZzX7XbLbrf7pEZv1NbWsm4ACLb+ac+16SHfCrZ9pH98K9j2kf7xrWDcx1O5h/wW7r2xatUqbd26VUVFRZZjQ0JCFBcX1wZVNWa321m3jdb1p2Drn/Zcmx7yrWDcR/rHd4JxH+kf3wm2fWzPtX3RQ34L94ZhNLrNxul0yjCM48a9++67WrRokYqKihQWFuavcgAAAICA57d77hMSEuRwOFRZWan6+nqVlJQoKSmp0Zjt27crJydHCxcuVI8ePfxVCgAAABAU/PbKfWhoqHJycpSZmSmXy6Xx48crNjZWeXl5io+PV3JysubOnasjR44oKytLktSrVy8tWrTIXyUBAAAAAc2v99wnJiYqMTGx0bkfg7wkLV682J/LAwAAAEGFb6gFAAAAAgThHgAAAAgQhHsAAAAgQBDuAQAAgABBuAcAAAACBOEeAAAACBCEewAAACBAEO4BAACAAEG4BwAAAAIE4R4AAAAIEIR7AAAAIEAQ7gEAAIAAQbgHAAAAAgThHgAAAAgQhHsAAAAgQPg13JeVlSk1NVUpKSnKz88/7vH6+nrdcccdSklJ0cSJE7V7925/lgMAAAAENL+Fe5fLpdzcXBUUFKikpESrV69WRUVFozHLli1T165d9eabb+r666/Xk08+6a9yAAAAgIDnt3BfXl6u6OhoRUVFKSwsTOnp6SotLW00Zv369Ro7dqwkKTU1VRs3bpRpmv4qCQAAAAhoof6a2Ol0KjIy0nNsGIbKy8uPG9OrV69jhYSGKjw8XNXV1erevXuT89psNtntdv8UbYF1/a+urs6v8wdj/7Tn2vSQb7Gu/9E/rNsa9E/grNtea/uih/wW7v2lf//+7V0CTmH0D1qLHkJr0D9oDfoHLeG323IMw1BVVZXn2Ol0yjCM48Z8/fXXkqSGhgbV1NSoW7du/ioJAAAACGh+C/cJCQlyOByqrKxUfX29SkpKlJSU1GhMUlKSXn31VUnS2rVrNXjwYNlsNn+VBAAAAAQ0m+nHd7Bu2LBBs2fPlsvl0vjx4zVt2jTl5eUpPj5eycnJqqur07333iu73a6IiAj99a9/VVRUlL/KAQAAAAKaX8M9AAAAgLbDN9QCAAAAAYJwDwAAAASIX1S4LysrU2pqqlJSUpSfn3/c4/X19brjjjuUkpKiiRMnavfu3Z7HnnnmGaWkpCg1NVX//Oc/fbpuYWGh0tLSlJGRoeuuu0579uzxPBYXF6fRo0dr9OjRuuWWW3y67ooVKzR48GDP/MuWLfM89uqrr+ryyy/X5Zdf7nlTsq/WnT17tmfN1NRUDRw40PPYyV5vdna2hgwZolGjRp3wcdM09eijjyolJUUZGRnatm2b57GWXiv901gg9Y/k/x6ifxqjf/gd1Np1A6mH6B/6R/rl/w766WS/CA0NDWZycrK5a9cus66uzszIyDC/+OKLRmOKiorMP//5z6Zpmubq1avNrKws0zRN84svvjAzMjLMuro6c9euXWZycrLZ0NDgs3U3btxoHjlyxDRN03zuuec865qmafbv399v1/vKK6+YjzzyyHHPra6uNpOSkszq6mrzwIEDZlJSknngwAGfrftTS5YsMWfOnOk5Ptnr/eCDD8ytW7ea6enpJ3z8nXfeMadOnWq63W5z8+bN5oQJE0zTbPm10j+B3T+m6d8eon/oH34HeSfYeoj+oX9M85f9O+infjGv3JeXlys6OlpRUVEKCwtTenq6SktLG41Zv369xo4dK0lKTU3Vxo0bZZqmSktLlZ6errCwMEVFRSk6Ovq4b8NtzbqDBw9Wly5dJB37Aomffn6/P6+3Kf/61790ySWX6Mwzz1RERIQuueSSFv9N3dt1S0pKmvxbpjcGDRqkiIiIJh8vLS3VmDFjZLPZ1L9/fx08eFD79u1r8bXSP4HdP5J/e4j+oX/4HeSdYOsh+of+aS1/99BP/WLCvdPpVGRkpOfYMAw5nc7jxvTq1UuSFBoaqvDwcFVXV7foua1Z96eWL1+uoUOHeo7r6uo0btw4XXnllXrrrbdatKY3665bt04ZGRm6/fbbPV/41VbXu2fPHu3evVuDBw/2nDvZ6/W2rsjISDmdzhbXS/8Ed/+cqDZveoj+oX/4HUQPtQb9Q/+0Vmt76KdCfVpZgFu1apW2bt2qoqIiz7m3335bhmGosrJS1113nfr27atf//rXPllv+PDhGjVqlMLCwvTiiy/qvvvu05IlS3wyd0uUlJQoNTVVHTp08Jzz5/UGOvqH/mkN+of+aS16iB5qDfrn1OmfX8wr94ZhNPqnHqfTKcMwjhvz49/cGhoaVFNTo27durXoua1ZV5LeffddLVq0SAsXLlRYWFij50tSVFSUfvvb32r79u0+W7dbt26etSZOnOh5c0VbXK8krVmzRunp6cc9X/L+er2tq6qqSoZhtLhe+ie4++dEtXnTQ/QP/cPvIHqoNegf+qe1WttDP/WLCfcJCQlyOByqrKxUfX29SkpKlJSU1GhMUlKS513Ca9eu1eDBg2Wz2ZSUlKSSkhLV19ersrJSDodDF1xwgc/W3b59u3JycrRw4UL16NHDc/77779XfX29JOm7777Txx9/rJiYGJ+tu2/fPs/P69ev17nnnitJuvTSS/Wvf/1L33//vb7//nv961//0qWXXuqzdSXpyy+/1MGDBzVgwACfXK+VpKQkrVy5UqZpasuWLQoPD1fPnj1bfK30T3D3j9S6HqJ/6B9+B9FDrUH/0D+t1doe+qlfzG05oaGhysnJUWZmplwul8aPH6/Y2Fjl5eUpPj5eycnJmjBhgu69916lpKQoIiJCf/3rXyVJsbGxGjlypNLS0tShQwfl5OQ0+meU1q47d+5cHTlyRFlZWZKkXr16adGiRfryyy/10EMPyWazyTRN3XjjjS3e6Jasu3TpUq1fv14dOnRQRESEHn/8cUnSmWeeqVtvvVUTJkyQJP3Xf/2XzjzzTJ+tKx37G2taWppsNpvnua253rvuuksffPCBqqurNXToUN12221qaGiQJE2ePFmJiYnasGGDUlJS1KVLF82ePdura6V/Art/JP/2EP1D//A7iB5qDv1D//zSfwf9lM00TbPFlQEAAAD4xfrF3JYDAAAAoHUI9wAAAECAINwDAAAAAYJwDwAAAAQIwj0AAAAQIAj3Pvb+++/r5ptvbvH51nrrrbdUUVHhOZ4yZYo+/fRTy+ft27fPJ/V89913mjp1aqvnwfFOtmecTqduv/32Ez720/5YtGiR5/zu3bs1atSoFs2/ePFirVy50uu6fq6oqEjLly9v9TzBYsWKFS36ivWZM2fqjTfeaPH51qKPTi2t7SMrL7zwwgn39ae9YbfbtWHDBs9jf/vb3/Tss89azm2apq699lodOnTI67p+7vrrr9f333/f6nlg7eDBg3ruuef8vs7P81AwI9yf4k62mQsLCzVx4sRWr9+9e3f17NlTmzZtavVc8A3DMPT0009bjnvmmWe8nruhoUGvvPJKiwNcc8aPH9/oa8zRvFdffbXRl7r8UtBHpxZ/99HkyZM1ZsyYZsf8PNy31IYNG3T++efrjDPOOMnq/s/o0aP1/PPPt3oeWDt48KBeeOGFFo83TVNut9vrdQj3/+cX8yVWbeXIkSO64447VFVVJbfbrVtvvVVpaWnaunWr5syZoyNHjqhbt256/PHH1bNnT02ZMkXnnXeePvzwQ7lcLs2ePVsXXHCBysvL9dhjj6murk6dO3fW7Nmz9Zvf/KbFNcyaNUtffPGFGhoaNH36dI0YMUIrVqzQ+vXrdfToUVVWVmrEiBGaMWOGJGnZsmUqKChQeHi4zj//fIWFhWnUqFFav369PvjgAy1cuFB/+9vfJElvvPGGHnnkEdXU1Oixxx7TwIEDj6th3bp1uvPOOyVJLpdLTz75pP75z3/KZrPpyiuv1JQpU5SUlKT09HSVlZWpQ4cOmjVrlubPn6+dO3dq6tSpmjx5siQpOTlZxcXFuvjii32xRaeM9uqlm266SXfddZfOP/98jRkzRiNGjND06dOVl5enXr166fe//71uueUWrV69WrW1tcrOztZnn32m3/zmN6qtrZUkPfnkk6qtrdXo0aMVExOjO++8Uy6XSw8++KA2b94swzD097//XZ07d2609nvvvad+/fopNPTYr46dO3fqoYce0nfffacOHTooLy9PX3/9tf72t78pPDxcO3bs0MiRI9W3b18tWbJEdXV1+u///m/9+te/VpcuXdS7d2+Vl5e3+NsUA8Xu3buVmZmpfv36afv27YqNjdVf/vIXdenS5YT98/HHH2vr1q2655571LlzZ7300ksqKCjQ22+/rbq6Og0YMEC5ubmNvnClOc316AUXXKD333+/0e+Po0ePaubMmfriiy90zjnnaN++fcrJydHatWvpo3bU1n307bff6sYbb9SKFSv02WefafTo0Xr77bd11llnacSIESouLlZBQYFOO+00TZ06VVu3btX9998vSbrkkkskSfX19Xr66adVW1urTZs2ef51sqKiQlOmTNHevXt13XXX6dprrz1u/eLiYl155ZWe45UrV+rZZ5+VzWbTeeedpyeeeEIzZ85Up06dZLfb9e2332r27NlauXKltmzZogsvvFBz5syRdOzbQK+++mpNmzbNp3uC482bN0+7du3S6NGj9bvf/U6ff/65Dh48qIaGBmVlZWnEiBHavXu3pk6dqgsvvFDbtm1Tfn6+Vq5cqddee03du3dXr1691K9fP02dOlW7du3SI488ourqanXu3FmzZs3S999/f1we+vWvf93el95+zCDzxhtvmA888IDn+ODBg2Z9fb35xz/+0fz2229N0zTNkpISc+bMmaZpmuY111zjGf/BBx+Y6enppmmaZk1NjfnDDz+Ypmma//73v83p06ebpmma7733nnnTTTcdt+5Pz8+bN89cuXKlaZqm+f3335uXX365efjwYfOVV14xk5KSzIMHD5q1tbXmsGHDzL1795pVVVXm8OHDzerqarO+vt6cPHmy+cgjj5imaZr33Xef+frrr3vWueaaa8zHH3/cNE3TfOedd8zrrrvuuFp27dpljh071nP83HPPmbfddpvneqqrq03TNM3hw4ebzz33nGmapvnYY4+Zo0aNMmtqasxvv/3WHDJkiOf5VVVV5qhRoyz+nw887dVLzzzzjFlUVGQePHjQHDdunHnDDTd45v/yyy/NyspKz9z/+Mc/POvb7XYzLi7OLC8vN03TNPv37++Zs7Ky0oyLizO3b99umqZp3n777Z4e/am8vDxzyZIlnuMJEyaY69atM03TNGtra80jR46Y7733nnnxxRebTqfTrKurMy+99FIzLy/PNE3TXLx4sfnoo496nv/3v//dfPbZZy3/vw40lZWVZt++fc2PPvrINE3TnDlzpllQUGDZPz/unWn+33+npmma99xzj1laWmqa5vG/E37043mrNU70+6OgoMD885//bJqmaX7++ef00S9Ee/RRWlqaWVNTYy5dutQcN26cuWrVKnP37t3mlVdeaZqmaT799NNmQUGBaZqmOWrUKPODDz4wTdM058yZ4/m99Morr3j+DPvxOX/84x/Nuro689tvvzV/+9vfmvX19cetPWzYMLOmpsY0TdPcsWOHefnll3uu8cfruO+++8w77rjDdLvd5ptvvmkOGDDA/Oyzz0yXy2WOHTvW05umaZopKSnmd99916L/r3Hyfvpn0g8//ODZw2+//dYcMWKE6Xa7zcrKSvO8884zN2/ebJqmaX7yySfmFVdcYdbW1po1NTVmSkqKp6+uvfZa86uvvjJN0zS3bNliTpkyxTTNpns2GAXdK/d9+/bVX/7yFz3xxBMaPny4Bg4cqB07dmjHjh3605/+JElyu9361a9+5XlOenq6JGnQoEE6dOiQDh48qMOHD+u+++7Tzp07ZbPZ9MMPP7S4hn/9619av369/vGPf0iS6urq9PXXX0uShgwZovDwcEnSueeeqz179ujAgQMaNGiQ5+uG//CHP8jhcDQ5f0pKiiSpX79+2rNnz3GP79+/X926dfMcb9y4UZMmTfK8ivbTrzX+8auY+/btqyNHjnj+OTQsLEwHDx5U165d1b1791/k7QL+1l69dPHFF2vp0qU6++yzNWzYMP373//W0aNHtWfPHv3mN7/R7t27PWM//PBDTZkyRZJ0/vnn67zzzmty3rPPPltxcXGSmu+dc889V5J06NAhOZ1OT7916tTJMy4hIUE9e/aUJP3617/2vGrXt29fvf/++55xPXr00P/+7/82e72BqlevXp5/7briiiu0dOlSXXbZZc32z0+9//77KigoUG1trQ4cOKDY2FglJSVZrvvVV181u8aJfn9s2rTJ80pq37596aNfkLbuowEDBmjTpk368MMPdcstt+if//ynTNM87l9uDx48qJqaGg0aNEjSsdtg/vnPfzY5b2JiosLCwtS9e3d1795d3377rSIjIxuNOXDggOfPoPfee09/+MMf1L17d0mN/9waPny459X8//iP//D0a0xMjPbs2ePpzx//7Prpn4fwL9M0NX/+fH344YcKCQmR0+nUN998I0k666yz1L9/f0nSxx9/rOTkZHXq1EmdOnXS8OHDJUmHDx/W5s2blZWV5Zmzvr6+za/jly7owv0555yjFStWaMOGDXrqqac0ePBgpaSkKDY2Vi+99NIJn/Pzf6K02WzKy8vT7373O/33f/+3du/efcJ/QmzO008/fdytF5988onCwsI8xx06dJDL5fJqXkmeOUJCQk74/M6dO7f4P4aOHTt65vppbSEhIWpoaJB07C8nP/0DOVi0Vy8lJCRo69atioqK0u9//3tVV1fr5ZdfVr9+/Vp1PT/vvbq6uuPGdOrU6YTnm5vrp73z854M1t6RTtwLpmk22z8/qqur0yOPPKJXXnlFvXr10t/+9rcW7YskyzWsfn9YoY/aVlv30cCBA7Vp0ybt3btXycnJ+p//+R9J0rBhw1p1HT/vmx//fPmp0NBQud1uhYQ0/3bBH+ey2WxN/rklHQuFP79lDP5VXFys7777TitWrFDHjh2VlJTk6bnTTjvN8vmmaapr165atWqVv0s9pQXdG2qdTqe6dOmi0aNHa+rUqdq+fbvOOeccfffdd9q8ebMk6YcfftAXX3zhec6aNWskSR999JHCw8MVHh6umpoaGYYh6dgblLxx6aWXqqioSKZpSpK2b9/e7PiEhAR9+OGH+v7779XQ0KB169Z5Hjv99NN1+PBhr9bv06dPo1fTfv/73+ull17y/NI7cOCAV/M5HA7FxsZ69ZxA0F69FBYWpl69eumNN97QgAEDNHDgQP3jH/844XsrBg0apNWrV0uSduzYoc8//9zzWGhoqFf/4iQd+9eknTt3SpLOOOMMRUZG6q233pJ07A/Ko0ePejWfw+FQ3759vXpOoNi7d6+nT1avXq2LL7642f756X/rP/5h2K1bNx0+fFhr165t8bpWPXoiF110kV5//XVJx+6N3rFjh+cx+qh9tXUfDRw4UK+99pqio6MVEhKiiIgIlZWVHffKfdeuXRUeHq6PPvpI0rFQ96OT+XNLOta7lZWVkqTBgwfrjTfeUHV1tSTv/9wyTVP79+9X7969va4D3vnpftfU1KhHjx7q2LGj3nvvvRP+y5507HfOj+8FOXz4sN555x1Jx35fnH322Z7fR6Zp6rPPPjtunWAXdOF+x44dmjBhgkaPHq0FCxZo2rRpCgsL09NPP60nn3xSV1xxhcaMGeP5pSgde5VpzJgxevjhh/XYY49JkjIzMzV//nyNGTPmhK8wNOfWW29VQ0ODrrjiCqWnpysvL6/Z8YZh6Oabb9bEiRM1efJk9e7d23PrTlpamp599lmNGTNGu3btatH6p512mqKiojx/uE6cOFG9evXSFVdcoSuuuMITBlvq/fffb/WrNqei9uyliy++WD169FDnzp118cUXq6qq6oThfvLkyTpy5IhGjhypp59+utGr+1deeaWuuOIK3X333S2+5qFDh3r+sJakuXPnasmSJcrIyNCkSZM8/7zaUh9//LF+//vfe/WcQHHOOefoueee08iRI3Xw4EFNnjy52f4ZO3asHnroIY0ePVphYWGaOHGiRo0apalTpyohIaHF61r16IlcddVVqq6uVlpamp566inFxMR4fgfRR+2rrfvo7LPPlmmantttLr74YoWHhysiIuK4sY8//rhyc3M1evRoz4tZkvS73/1OFRUVGj16tOcFj5ZITEzUBx98IEmKjY3VLbfcoilTpuiKK67wvFG2pbZu3ar+/ft7bkeF/3Tr1k0XXXSRRo0apc8++0xbt25VRkaGVq1a1eSHR1xwwQVKSkrSFVdcoRtvvFF9+/b1/M554okntHz5ck+G+vGFgZPJQwGrne71P2X8/M1H7eXQoUOmaR57M8rNN9/sefPZyVq3bp05f/58X5RmXnXVVeaBAwd8Mlcg+6X0Umvdeuutnjcztca2bdvMe+65p/UFnYJ++gazU0FDQ4NZW1trmqZp7ty50xw+fLhZV1fXqjnpo9Y71fqotZxOp3n99df7ZK5Zs2aZ7777rk/mgn/8mHuOHDlijh071ty6dWs7V3Tq4K+sp4gFCxbo3XffVV1dnS699FKNGDGiVfOlpKR4/c+YJ/Ldd9/pT3/60wlftUFguvvuu7V//3716dOnVfNUV1c3elMUfrmOHj2qa6+9Vg0NDTJNUw899FCje5lPBn0Eb/Xs2VMTJ07UoUOHWv1Z93379tWQIUN8VBn8IScnRxUVFaqrq9PYsWNb/b6yYGIzzZ/8WxkAAACAU1bQ3XMPAAAABCrCPQAAABAgCPcAAABAgCDcAwAAAAGCcA8AAAAEiP8Py5hfgEh/1tMAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# first look at data\n",
"sns.pairplot(iris, hue='species', palette=\"viridis\");"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8c6e7a68-b433-4399-9c76-0507730015b5",
"metadata": {},
"outputs": [],
"source": [
"iris.cov()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b6ba2df8-f27c-40eb-909b-9d27c628f3a6",
"metadata": {},
"outputs": [],
"source": [
"iris.corr()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1a6df280-a126-41ee-8c5b-2f299471109f",
"metadata": {},
"outputs": [],
"source": [
"def iris_preprocessing(iris_data):\n",
" # encode species label as numeric value\n",
" label_encoder = preprocessing.LabelEncoder()\n",
" iris_data[\"species_id\"] = label_encoder.fit_transform(iris.species)\n",
"\n",
" # scale values\n",
" scaler = preprocessing.MinMaxScaler()\n",
" iris_data[\n",
" [\"sepal_length\", \"sepal_width\", \"petal_length\", \"petal_width\"]\n",
" ] = scaler.fit_transform(\n",
" iris_data[\n",
" [\"sepal_length\", \"sepal_width\", \"petal_length\", \"petal_width\"]\n",
" ]\n",
" )\n",
" return iris_data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e3222fe3-9f71-4fb9-a8a3-ef9dad329859",
"metadata": {},
"outputs": [],
"source": [
"# preprocessing\n",
"iris = sns.load_dataset(\"iris\")\n",
"iris = iris_preprocessing(iris)\n",
"iris[:10]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "50e46151-194a-4ec9-b2cb-355e8c668b9d",
"metadata": {},
"outputs": [],
"source": [
"ax = iris.plot.scatter(\n",
" x=\"petal_length\", y=\"petal_width\", c=\"species_id\", colormap=\"viridis\"\n",
");"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc13815a-80e4-48bd-813b-8a6129bd7dde",
"metadata": {},
"outputs": [],
"source": [
"# apply PCA, reduce to a single dimension\n",
"petals = iris[[\"petal_length\", \"petal_width\"]]\n",
"pca = PCA(n_components=1)\n",
"pca.fit(petals)\n",
"petals_1d = pca.transform(petals)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9892b191-3eee-4d22-9d59-0be19aee77aa",
"metadata": {},
"outputs": [],
"source": [
"petals_1d[:15]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "567712a3-2554-4822-af66-01c2e0578d69",
"metadata": {},
"outputs": [],
"source": [
"# actual components of the PCA (principal axes)\n",
"pca.components_"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fe92f4e0-35ec-4970-bd29-92df0cb81616",
"metadata": {},
"outputs": [],
"source": [
"pca.explained_variance_ratio_"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "56c720f9-a073-4eb1-ac33-6b29e0e4a918",
"metadata": {},
"outputs": [],
"source": [
"petals_inverse = pca.inverse_transform(petals_1d)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "07377fe7-7eb8-45b5-8d4a-33e44b9d3309",
"metadata": {},
"outputs": [],
"source": [
"petals"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b386e633-ccc3-43fd-bc81-98a4a5c83388",
"metadata": {},
"outputs": [],
"source": [
"# visualize sepals\n",
"plt.scatter(\n",
" petals[\"petal_length\"], petals[\"petal_width\"], s=50, label=\"2d data\"\n",
")\n",
"plt.scatter(petals_inverse[:, 0], petals_inverse[:, 1], label=\"1d data\")\n",
"plt.xlabel(\"Petal length\")\n",
"plt.ylabel(\"Petal width\")\n",
"plt.legend();"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c13bd66e-d7cc-442d-8163-c30645f1bfb2",
"metadata": {},
"outputs": [],
"source": [
"plt.scatter(petals_1d, y=np.zeros(len(petals_1d)))\n",
"plt.xlabel(\"PC1\")"
]
},
{
"cell_type": "markdown",
"id": "4d9d8408-cba1-40de-9e23-47b9917bd721",
"metadata": {},
"source": [
"#### Example 4D -> 2D"
]
},
{
"cell_type": "markdown",
"id": "24c18f82-a823-413d-8a5f-53365abc8672",
"metadata": {},
"source": [
"We will continue to use the iris dataset, but now use all four features."
]
},
{
"cell_type": "markdown",
"id": "cff7ae65-f278-4d9d-8916-95c432eb1471",
"metadata": {},
"source": [
"
\n",
"Note: The follow code is based on plot.ly. To show plot.ly charts in this notebook in jupyer lab, we ned to install an extension: `jupyter labextension install @jupyter-widgets/jupyterlab-manager jupyterlab-plotly`