Commit 80411ff8 authored by Eva Zangerle's avatar Eva Zangerle
Browse files

minor updates on notebooks 05 and 06

parent a8898a0b
...@@ -737,42 +737,6 @@ ...@@ -737,42 +737,6 @@
"execution_count": 13, "execution_count": 13,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
},
{
"data": {
"text/plain": [
"count 299.000000\n",
"mean 75.746154\n",
"std 254.425358\n",
"min 1.200000\n",
"25% 6.200000\n",
"50% 6.200000\n",
"75% 6.200000\n",
"max 999.900000\n",
"Name: VISIB, dtype: float64"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
"count 278.000000\n",
"mean 5.935971\n",
"std 0.672031\n",
"min 1.200000\n",
"25% 6.100000\n",
"50% 6.200000\n",
"75% 6.200000\n",
"max 6.800000\n",
"Name: VISIB, dtype: float64"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
} }
], ],
"source": [ "source": [
...@@ -3011,6 +2975,7 @@ ...@@ -3011,6 +2975,7 @@
], ],
"source": [ "source": [
"# Kolmogorov-Smirnov test\n", "# Kolmogorov-Smirnov test\n",
"# null hypothesis: no difference between the two distributions\n",
"ks_statistic, p_value = kstest(humans.Height, \"norm\")\n", "ks_statistic, p_value = kstest(humans.Height, \"norm\")\n",
"ks_statistic, p_value" "ks_statistic, p_value"
] ]
...@@ -4515,7 +4480,7 @@ ...@@ -4515,7 +4480,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 65, "execution_count": 98,
"id": "708dbcd3-d704-4ea7-9db8-735aa15b4de8", "id": "708dbcd3-d704-4ea7-9db8-735aa15b4de8",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
...@@ -4525,7 +4490,7 @@ ...@@ -4525,7 +4490,7 @@
"768" "768"
] ]
}, },
"execution_count": 65, "execution_count": 98,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
}, },
...@@ -4535,7 +4500,7 @@ ...@@ -4535,7 +4500,7 @@
"743" "743"
] ]
}, },
"execution_count": 65, "execution_count": 98,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -4838,7 +4803,7 @@ ...@@ -4838,7 +4803,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 70, "execution_count": 102,
"id": "e8f8c6bd-9e38-4cb1-b2d9-2fe0739bfcc8", "id": "e8f8c6bd-9e38-4cb1-b2d9-2fe0739bfcc8",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
...@@ -4981,7 +4946,7 @@ ...@@ -4981,7 +4946,7 @@
"[6342 rows x 5 columns]" "[6342 rows x 5 columns]"
] ]
}, },
"execution_count": 70, "execution_count": 102,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -6320,7 +6285,7 @@ ...@@ -6320,7 +6285,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 86, "execution_count": 99,
"id": "a37a9e62-31c8-49cb-9fd4-d352e9a62f51", "id": "a37a9e62-31c8-49cb-9fd4-d352e9a62f51",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
...@@ -6439,7 +6404,7 @@ ...@@ -6439,7 +6404,7 @@
"[200 rows x 3 columns]" "[200 rows x 3 columns]"
] ]
}, },
"execution_count": 86, "execution_count": 99,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -6567,7 +6532,7 @@ ...@@ -6567,7 +6532,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 89, "execution_count": 100,
"id": "70500270-a048-48b5-8e36-27da5923e384", "id": "70500270-a048-48b5-8e36-27da5923e384",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
...@@ -6585,7 +6550,7 @@ ...@@ -6585,7 +6550,7 @@
"0.027756186064182953" "0.027756186064182953"
] ]
}, },
"execution_count": 89, "execution_count": 100,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
...@@ -6645,17 +6610,25 @@ ...@@ -6645,17 +6610,25 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 92, "execution_count": 101,
"id": "accc963b-a11d-44b4-91ce-e7f0297ca7c0", "id": "accc963b-a11d-44b4-91ce-e7f0297ca7c0",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/eva/.local/share/virtualenvs/data-engineering-analytics-notebooks-Qx0adyYX/lib64/python3.9/site-packages/sklearn/base.py:441: UserWarning: X does not have valid feature names, but KNeighborsRegressor was fitted with feature names\n",
" warnings.warn(\n"
]
},
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"0.9743878175626131" "0.9743878175626131"
] ]
}, },
"execution_count": 92, "execution_count": 101,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
......
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment