Commit 74b89cb5 authored by Eva Zangerle's avatar Eva Zangerle
Browse files

refactored notebooks 05 and 06

parent 7456a7ba
......@@ -12,7 +12,7 @@
},
{
"cell_type": "code",
"execution_count": 110,
"execution_count": 1,
"id": "792af709-0621-4d64-8166-8c8cc28cc73c",
"metadata": {},
"outputs": [],
......@@ -36,7 +36,7 @@
},
{
"cell_type": "code",
"execution_count": 111,
"execution_count": 2,
"id": "f9d528e4-e914-4178-bda1-e6caa817b965",
"metadata": {},
"outputs": [],
......@@ -47,7 +47,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"id": "82672d3c-d574-47f1-b2f1-9a42b414e278",
"metadata": {},
"outputs": [],
......@@ -90,7 +90,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 4,
"id": "161f29a5-e0a6-478b-85f9-e5fe19fdfdb4",
"metadata": {},
"outputs": [
......@@ -187,7 +187,7 @@
"11 "
]
},
"execution_count": 3,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
......@@ -201,7 +201,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"id": "e4c7eadb-fab7-4b52-8a67-cac1f910509c",
"metadata": {},
"outputs": [
......@@ -251,7 +251,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 6,
"id": "023e9778-16a3-4ab1-bb87-3897786ab742",
"metadata": {},
"outputs": [
......@@ -301,7 +301,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 7,
"id": "b818bc1c-6461-4e76-98ca-71f3e4e2c504",
"metadata": {},
"outputs": [],
......@@ -321,7 +321,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 8,
"id": "193d55a3-a3d6-4d10-9979-baacd6af5afa",
"metadata": {},
"outputs": [
......@@ -331,7 +331,7 @@
"5.1392996889736136"
]
},
"execution_count": 7,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
......@@ -367,7 +367,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 9,
"id": "43c7d634-fb1b-47ce-80e4-666d2e362400",
"metadata": {},
"outputs": [
......@@ -522,7 +522,7 @@
"[299 rows x 6 columns]"
]
},
"execution_count": 8,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
......@@ -535,7 +535,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 10,
"id": "97b89d82-42a9-4711-836d-f396c92f3998",
"metadata": {},
"outputs": [
......@@ -597,7 +597,7 @@
"1 1001499999 UNKNOWN 88.1 999.9 999.9 63.5"
]
},
"execution_count": 9,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
......@@ -621,7 +621,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 11,
"id": "19b41f7f-7e52-4078-9c30-c1e03fe0d7a0",
"metadata": {},
"outputs": [
......@@ -639,7 +639,7 @@
"Name: VISIB, dtype: float64"
]
},
"execution_count": 10,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
......@@ -657,7 +657,7 @@
"Name: VISIB, dtype: float64"
]
},
"execution_count": 10,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
......@@ -670,50 +670,10 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 12,
"id": "d48a0e1e-0a10-4775-8977-2999c45c0a86",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<AxesSubplot:>"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Visibility including sentinels')"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
"<AxesSubplot:>"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Visibility excluding sentinels')"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIoAAAE/CAYAAAApLiiUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA25ElEQVR4nO3dfVyUdb7/8fcwgISKk8ZNpu2ubmOtpdJqeIOUKKB5AxJutbuuaXu2bfPYVLibeCxXBX9ntaJyH21mpba1FYboUYvyFtmIMm/aUyZrramrMGUOoISMw/z+EOdEKiZ318D1ej4ePR7Md6655n1ZQx8/8/1+L4vX6/UKAAAAAAAAphdgdAAAAAAAAAD4BxpFAAAAAAAAkESjCAAAAAAAAHVoFAEAAAAAAEASjSIAAAAAAADUoVEEAAAAAAAASTSKgFYxduxYFRcXN3jMkSNHFB0dLY/HI0maPHmycnJyLvnYtWvXatq0ac2Se8eOHUpKSmryeRq6lot5+umnlZ6eLunc626L/vKXv2j27NlNPs/hw4fVp08fnT59uhlSAQDQvrTV2qslUIf9H+ow4PuhUQQ00d13360nn3zynPGNGzdq2LBhOn36tNavX6+YmJgGz9O9e3ft2rVLVqv1ou/Z0LETJkzQCy+84Hvcp08fffHFF9/jSs41cOBA5efnN+q1LeFS/oz8QXFxseLi4uqN/fa3v1VmZqZBiQAAaPvac+3lz6jDAPOgUQQ00cSJE7V27Vp5vd5642vXrtX48eMVGBhoUDIAAID2h9oLAFoWjSKgiUaNGiWXy6UdO3b4xsrLy7VlyxalpKRIkuLj4/Xuu+9Kkj766COlpqbqxhtv1NChQ7Vw4UJJ55/CevDgQaWlpenGG2/UvffeK5fLdcFjz8rNzdWdd94pSfrFL34hSUpOTlZ0dLQ2bNigcePGafPmzb7j3W63YmJi9Mknn5xzru9+ExMfH6/nn39e48eP109/+lM5HA6dOnXK9/zGjRuVnJysG2+8UaNGjVJBQcE55/z2FObzXcuhQ4f0y1/+UtHR0Zo6daqOHz9+wWMnT56s7Oxs3XHHHYqOjta0adP09ddf+47Py8vTiBEjFBMToz//+c/1/j1817Zt23TrrbcqOjpaw4cP1/PPP+97bsuWLUpOTtbAgQN1xx136NNPP73on0lVVZX+4z/+Q06nU9HR0YqOjlZZWVm96z97PatXr9Ytt9yimJgYPfPMM75z19bWaunSpRo1apRiYmJ0//33+/4b+K7c3FyNHDlS0dHRio+P19q1a897HAAAbV17rr2kC9cdGzZsUHx8vE6cOCHpTO0ybNgwX+1DHUYdBjQXGkVAE4WEhGjMmDHKy8vzjb355pvq1auXrr322nOOz8zM1K9+9Svt3LlT77zzjsaMGXPBc+fl5SkrK0uFhYUKDAzUggULLinbyy+/LElas2aNdu3apVtvvVXJycn1/ue1bds2RURE6Cc/+cn3Ouebb76pZcuWadOmTdq3b59yc3MlnSnC/vCHP+j3v/+9duzYoZdffllXXXXVJeWVpPT0dPXt21fFxcX63e9+p9WrVzd4/Lp167Rw4UIVFRXJ7Xb7pn7v379ff/zjH7Vo0SJt375dJ06cUFlZ2QXPM3v2bM2bN0+7du3SunXrNHjwYEnSJ598ooyMDM2bN0/FxcW6/fbb9bvf/U41NTUN/pmEhobqueeeU0REhHbt2qVdu3YpMjLyvO/94Ycf6q233tKKFSv05z//WZ999pkk6aWXXtLGjRv117/+Vdu3b1eXLl00b968c15fVVWlBQsW6LnnntOuXbv06quv6rrrrmv4DxoAgDaqPddeDdUdZxspCxYs0PHjxzV79mwtWLBAXbt2pQ6jDgOaFY0ioBmkpKQoPz/fN7smLy9PEydOPO+xgYGBOnjwoL7++mt17NhRAwYMuOB5k5OTZbfbFRoaqvvvv19vvfVWkzcQnDBhgrZt2+b7Nmrt2rWaMGHC93795MmTFRkZKZvNphEjRmjv3r2SpFWrVum2227TsGHDFBAQoMjISPXu3fuSsh05ckT/+Mc/dP/99ys4OFiDBg1SfHx8g69JTU3Vj370I4WEhGj06NG+PG+99ZZGjBihgQMHKjg4WDNmzJDFYrngeQIDA7V//36dOHFCXbp0Ud++fSVJr732mm6//Xb1799fVqtVEydOVFBQkHbv3n3RP5Pva/r06QoJCdG1116ra6+91vdN2auvvqoHHnhAUVFRCg4O1vTp05Wfn3/ebzMDAgL0z3/+U9XV1YqIiNA111xzSRkAAGhL2mvtdbG649FHH9V7772nX/3qV4qPj9eIESMkUYdRhwHNi0YR0AwGDhyoyy+/XBs3btTBgwf1j3/8Q+PGjTvvsZmZmTpw4IDGjBmj2267TVu2bLngea+88krfz927d5fb7a43BbgxIiMjdeONNyo/P18VFRUqKCi4pEZReHi47+fLLrtMVVVVkqSjR4/q6quvblI2p9OpsLAwhYaG+sa6d+/eqDxOp1NRUVH1nrPZbBc8z1NPPaVt27ZpxIgR+uUvf6ldu3ZJOlM0vfjiixo4cKDvn9LSUjmdzotm+L6uuOKK877+yJEjuu+++3zve+uttyogIEDHjh2r9/rQ0FA98cQTevXVVxUbG6vf/OY3vm/DAABoj9pr7XWxuiMsLEyjR49WSUmJpk6d6nsdddi5Gb4v6jDgXOz0BjST5ORk5eXl6V//+pdiY2Pr/U/n2374wx/q8ccfV21trd5++23NmDHjgrdvPXr0aL2fg4KCdPnll9cbb4yJEycqJydHHo9HAwYMuOBU3Etx5ZVX6uDBgxc97rLLLlN1dbXv8VdffeX7OTw8XBUVFaqqqvIVKUeOHGnwG6gLiYiI0L/+9S/f4+rq6guuK5ekfv366ZlnnpHb7dbLL78sh8Ohbdu26corr9Rvf/tb3XvvvZecoTG5vy0qKkpZWVn66U9/es5zhw8frvd4+PDhGj58uKqrq5Wdna05c+bolVdeadL7AwDgz9pj7XWxumPv3r164403NG7cOC1YsMC3lw912Lmow4DGY0YR0ExSUlJUVFSk119/3beR4vmsWbNGX3/9tQICAhQWFibpzHTV81m7dq3279+vb775Rk8++aSSkpIu+ZakV1xxhQ4dOlRvbNSoUfrkk0+0cuXKBrNeirS0NOXm5qqoqEi1tbUqKys777cp1113nT744AMdOXJElZWVevbZZ33PXXXVVbr++uv19NNPq6amRjt27GjwW7+GJCUlafPmzdq5c6dqamr09NNPn3N3lLNqamq0du1aVVZWKigoSB07dvT9O5k0aZJeffVV7dmzR16vV1VVVdq6datv+nhDunXrJpfLpcrKykZdw5133qns7Gz9+9//liR9/fXX2rhx4znHffXVV9q4caOqqqoUHBys0NDQC/43BQBAe9Eea6+G6o5Tp05p5syZeuCBB7Rw4UI5nU7fnkjUYeeiDgMaj/+CgWbSo0cPRUdH65tvvtHIkSMveNz27ds1duxYRUdHKzMzU0888YRCQkLOe2xycrIefvhhDRs2TDU1NZo9e/Yl55o+fboefvhhDRw4UBs2bJB0ZhPIxMREHT58WAkJCZd8zvPp16+fFi5c6Pvm5Ze//KWOHDlyznHDhg3TrbfeqgkTJig1NdW3tv6sxx57THv27PHdIaOxjaxrrrlGc+bM0YMPPqjhw4crNDRUXbt2VXBw8HmPX7NmjeLj43XjjTfq1Vdf1aJFiyRJN9xwg+bPn6958+Zp0KBBSkxM9G3gfTG9e/fW2LFjNWrUKA0cOLDBTRzP5+z+A9OmTVN0dLR+9rOf6aOPPjrnuNraWi1fvlzDhw/XTTfdpA8++EBz5869pPcCAKCtaY+1V0N1x2OPPaaoqCj9/Oc/V3BwsBYtWqQnn3xSBw4coA47D+owoPEs3gu1dgG0a0uWLNGBAwe0ePFio6O0ipMnT2rQoEHKz89Xz549jY4DAABMxmy117dRhwFtCzOKABNyuVx64403dPvttxsdpUVt3rxZ33zzjaqqqvTf//3fstvt6tGjh9GxAACAyZil9vo26jCg7aJRBJjM66+/rltuuUXDhw/XoEGDjI7TojZt2uTbXPCLL77Q448/3uSNDQEAAC6FmWqvb6MOA9oulp4BAAAAAABAEjOKAAAAAAAAUIdGEQAAAAAAACRJgUYHaEhtba08HlbGAWZitVr43AMmExRkNTpCu/b555/rgQce8D0+dOiQZsyYobvuuuuCr6EGA8yHGgwwl4bqL7/eo8jt9sjlqjI6BoBWZLOF8rkHTCY8vLPREUzD4/EoLi5Or7/+uq666qoLHkcNBpgPNRhgLg3VXyw9AwAAMImioiL17NmzwSYRAAAwNxpFAAAAJrF+/XqNGzfO6BgAAMCP+fUeRQAAAGgeNTU12rx5sx566KGLHmu1WmSzhbZCKgD+wmoN4HMPQBKNIgAAAFMoKChQ3759dcUVV1z0WI/Hy14lgMmwRxFgLuxRBAAAYHLr16/X2LFjjY4BAAD8HI0iAACAdq6qqkrvvvuuEhMTjY4CAAD8HEvPAAAA2rnQ0FAVFxcbHQMAALQBF51RNGvWLA0ZMqTeHTJcLpemTp2qxMRETZ06VeXl5ZIkr9erBQsWKCEhQePHj9fHH3/se83q1auVmJioxMRErV69ugUuBUBbFhERpoiIMAUHB/p+BgAAQMvKzc1RXFyMQkKCFRcXo9zcHKMjATDYRRtFqampWrZsWb2xpUuXasiQIXr77bc1ZMgQLV26VNKZTRIPHDigt99+W/Pnz9fcuXMlnWksLVmyRK+//rpycnK0ZMkSX3MJAL7dFFq27IXzjgMAAKB55ebmKCtrvrKyFqmy8qSyshYpK2s+zSLA5C7aKBo0aJC6dOlSb2zTpk1KSUmRJKWkpGjjxo31xi0WiwYMGKCKigo5nU4VFhZq2LBhstls6tKli4YNG6bt27c3/9UAaNOczgr96le/ktNZYXQUAACAdi87e7Gys5coNjZOQUFBio2NU3b2EmVnLzY6GgADNWqPomPHjikiIkKSFB4ermPHjkmSysrKFBUV5TsuKipKZWVl54xHRkaqrKzsou9jtVpks4U2JiKANmbZshdks4XKag2QzRaqZcte0K9/PY3fAQAAAC2kpGSfYmKG1BuLiRmikpJ9BiUC4A+avJm1xWKRxWJpjizn8Hi8crmqWuTcAPzLr389TRMmpMlmC5XLVaVf/3qaJPE7ADCB8PDORkcAAFOy2/uouLhIsbFxvrHi4iLZ7X0MTAXAaBddenY+3bp1k9PplCQ5nU517dpV0pmZQqWlpb7jSktLFRkZec54WVmZIiMjm5IbQDsUERGmlStXsjcRAABAK3A40uVwTFdhYYHcbrcKCwvkcEyXw5FudDQABmpUoyg+Pl55eXmSpLy8PI0cObLeuNfr1e7du9W5c2dFREQoNjZWhYWFKi8vV3l5uQoLCxUbG9tsFwGgbfv2nkRnZxJ9dxwAAADNKzV1kjIy5igjY6Y6d+6ojIyZysiYo9TUSUZHA2Agi9fr9TZ0wIMPPqj3339fx48fV7du3fSf//mfGjVqlBwOh44eParu3bsrOztbNptNXq9X8+bN0/bt23XZZZcpKytLN9xwgyRp1apVevbZZyVJv/3tb3XbbbddNJzb7WHZCWAyZ5eeATAPlp75H2owwHyowQBzaaj+umijyEgUKYD5UKQA5kOjyP9QgwHmQw0GmEtD9Vejlp4BAAAAAACg/aFRBAAAAAAAAEk0igAAAAAAAFCHRhEAAAAAAAAk0SgCAAAAAABAHRpFAAAAAAAAkESjCAAAAAAAAHVoFAEAAAAAAEASjSIAAAAAAADUoVEEAAAAAAAASTSKAAAAAAAAUIdGEQAAAAAAACTRKAIAAAAAAEAdGkUAAAAAAACQRKMIAAAAAAAAdWgUAQAAAAAAQJIUaHQAAAAAAMCli4uL0aef7jU6xjmuvfY6FRQUGx0DQCPRKAIAAACANqg5mzGDHivQBw/FNdv5ALRdLD0DAAAAAACAJBpFAAAAAAAAqEOjCAAAAAAAAJLYowgAAAAAWk183kQpuMzoGOfofJ0Uv8HoFOdRE6nNKauNTgGYCo0iAAAAAGgllZ894JebRttsoXK5qoyOcY5BjxUYHQEwHZaeAQAAAAAAQBKNIgAAAAAAANRh6RkAAAAAtCKWU31/YSH8lRVobXzqAAAA2rmKigr913/9l0pKSmSxWJSVlaXo6GijYwGm5I/7E0lnmlf+mg1A66JRBAAA0M5lZmZq+PDheuqpp1RTU6Pq6mqjIwEAAD/FHkUAAADtWGVlpT744AOlpaVJkoKDgxUWFmZwKgAA4K9oFAEAALRjhw8fVteuXTVr1iylpKRo9uzZqqryv1tgAwAA/2Dxer1eo0NciNvtkctFIQOYic0WyuceMJnw8M5GR2jX/vGPf+j222/X3/72N/Xv318LFixQp06d5HA4Lvia2tpaeTx+WyICqDNgQH998snHRsc4x09+0le7d+8xOgaABgQFWS/4HHsUAQAAtGNRUVGKiopS//79JUmjR4/W0qVLG3yNx+OlaQ+0AVu3FjX5HHb7D+RyHfc9ttkuV0nJF00+L79DAP/W0Bd1LD0DAABox8LDwxUVFaXPP/9cklRUVKTevXsbnAqAPzjbJLLbr9X+/Z/Lbr+27vEPjI4GwEDMKAIAAGjn5syZo/T0dLndbvXs2VMLFy40OhIAP3C2SVRY+L5stlAVFr6v2NibVFLyqdHRABiIPYoA+BX2KALMhz2K/A81GGAOERFh2rHjf3X11Vf7arCDBw9q4MDr5XRWGB0PQAtqqP5iRhEAAAAAmFRMTH95PB7fY6v1whvcAjAH9igCAAAAAFOyyOPxqEOHEBUWvqsOHULqmkYWo4MBMBAzigAAAADAlLyyWq06dapasbFDJZ2ZUfTtGUYAzIcZRQAAAABgUjt3fiKns0I1NafldFZo585PjI4EwGA0igAAAADApO6+e3KDjwGYT5OWni1fvlw5OTmyWCyy2+1auHChnE6nHnzwQblcLvXt21d/+tOfFBwcrJqaGv3+97/Xxx9/LJvNpieeeEI9evRorusAAAAAAFyC7t2v0o4d7ysiIuyccQDm1egZRWVlZVq5cqXeeOMNrVu3Th6PR+vXr9fixYt111136Z133lFYWJhWrVolScrJyVFYWJjeeecd3XXXXVq8eHGzXQQAAAAA4NJ06dLlksYBmEOTlp55PB5VV1fr9OnTqq6uVnh4uN577z0lJSVJkiZOnKhNmzZJkjZv3qyJEydKkpKSklRUVCSv19vE+AAAAACAxti79xMlJY2pt0dRUtIY7d3LPkWAmTW6URQZGalp06ZpxIgRio2NVadOndS3b1+FhYUpMPDMiraoqCiVlZVJOjMD6corr5QkBQYGqnPnzjp+/HgzXAIAAAAAoDGeeOLPDT4GYD6N3qOovLxcmzZt0qZNm9S5c2fdf//92r59e3Nmk9Vqkc0W2qznBODfrNYAPvcAAACtJDr6Op06dcr3uEOHDgamAeAPGt0oevfdd9WjRw917dpVkpSYmKidO3eqoqJCp0+fVmBgoEpLSxUZGSnpzAyko0ePKioqSqdPn1ZlZaUuv/zyBt/D4/HK5apqbEQAbZDNFsrnHjCZ8PDORkcAAFOyWgN16tQphYV10ZYtWzVixC2qqCiX1dqkex4BaOMavfSse/fu2rNnj7755ht5vV4VFRXpxz/+sWJiYpSfny9JWr16teLj4yVJ8fHxWr16tSQpPz9fgwcPlsViaYZLAAAAAABcKo/ntEJCQlRRUa6f/jRaFRXlCgkJkcdz2uhoAAzU6EZR//79lZSUpIkTJ2r8+PGqra3V7bffrpkzZ+rFF19UQkKCXC6XJk2aJElKS0uTy+VSQkKCXnzxRaWnpzfbRQAAAAAALl1x8Z56m1kXF+8xOhIAg1m8fnzrMbfbwxIUwGRYegaYD0vP/A81GGAOERFhGjjwJm3YsNFXg9166yjt2PG+nM4Ko+MBaEEN1V8sPgUAAAAAE+re/Srt2PG+rr46QtXV1QoJCVF1dbW6d7/K6GgADNTopWcAAAAAgLbrkUfmKSDAqurqaklSdXW1AgKseuSReQYnA2AkGkUAAAAAYELZ2Yu1atWaensUrVq1RtnZi42OBsBANIoAAAAAwIRKSvYpJmZIvbGYmCEqKdlnUCIA/oA9igAAAADAhOz2Phoy5EYdPPiFb+zqq38gu72PgakAGI0ZRQAAAABgQhUVFTp48AsNHHiTvvjikAYOvEkHD36higrueAaYGY0iAAAAADChI0f+rX79+uvEiUr96Ec/0IkTlerXr7+OHPm30dEAGIilZwAAAABgUq++ulpXXHGFbLZQuVxV+uqrr/STn/QyOhYAAzGjCAAAAABM6oEH7mvwMQDzYUYRAAAAAJjQddf9RPn5byoiIuyccQDmxYwiAAAAADChL7744pLGAZgDjSIAAAAAMKGqqpPq0aOnnM4K1dScltNZoR49eqqq6qTR0QAYiEYRAAAAAJjUqlVrG3wMwHzYowgAAAAATGro0J+qtrbW9zgggLkEgNnxWwAAAAAATKq2tlZBQUHaurVAQUFB9ZpGAMyJGUUAAAAAYFIWi0Vut1u33BLne+z1eg1OBcBIzCgCAAAAAJPavfvTeptZ7979qdGRABiMGUUAAAAAYFKxsYN04kSlvF6vLBaLOnXqbHQkAAZjRhEAAAAAmFBwcAdVVlaoW7cr9NFH/6tu3a5QZWWFgoM7GB0NgIGYUQQAAAAAJuR21yg0NFRfffWl+vW7XpIUGhqqb775xuBkAIzEjCIAAAAAMCGv16s9e/bV26Noz559bGYNmBwzigAAANq5+Ph4dezYUQEBAbJarcrNzTU6EgA/YLFYlJk5V3/60xO+sczMubJYLAamAmA0GkUAAAAmsGLFCnXt2tXoGAD8yM03j9Dy5c9r9eo3VF7uUpcuNpWXu3TLLfFGRwNgIJaeAQAAAIAJ3XHHLxQSEqLycpckqbzcpZCQEN1xxy+MDQbAUDSKAAAATODuu+9WamqqXnvtNaOjAPAT2dmL9corq+rtUfTKK6uUnb3Y6GgADGTx+vFOZW63Ry5XldExALQimy2Uzz1gMuHhnY2O0O6VlZUpMjJSx44d09SpUzVnzhwNGjTogsfX1tbK4/HbEhFAMwkJCVZl5UkFBQXJag2Qx1Mrt9utzp07qrq6xuh4AFpQUJD1gs+xRxEAAEA7FxkZKUnq1q2bEhIS9NFHHzXYKPJ4vDTtAROw2/to6NCh+uij3fJ6vbJYLOrXb4Ds9j78DgDauYa+qGPpGQAAQDtWVVWlEydO+H7++9//rmuuucbgVAD8gcVi0Z49u5SYOFpHjpQqMXG09uzZxV3PAJNjRhEAAEA7duzYMd13332SJI/Ho3HjxikuLs7gVAD8waef7lVc3C364osD6tGju+z2PoqLu0Xbt28zOhoAA7FHEQC/wh5FgPmwR5H/oQYDzCEiIkz//OchdenSxVeDlZeX65presrprDA6HoAWxNIzAAAAAEA9FotFmZlz641lZs5l6Rlgciw9AwAAAAATuvnmEVq+/HmtXPmiamtrFRAQoNraWt1yS7zR0QAYiBlFAAAAAGBCvXv/WBaLRbW1tZKk2tpaWSwW9e79Y4OTATASjSIAAAAAMKGXXlqhuXMz5XRWqKbmtJzOCs2dm6mXXlphdDQABqJRBAAAAAAmVFNzSlOmTKs3NmXKNNXUnDIoEQB/wB5FAAAAAGBCwcEd9LOfpWj37l2qqTml4OAOGjAgWsHBHYyOBsBAzCgCAAAAABPq3bu33n//PY0YEa8jR0o1YkS83n//PfXu3dvoaAAMxIwiAAAAADChzz77TDfdNFhbtmxW9+5RCg7uoJtuGqzdu3cZHQ2AgWgUAQAAAIAJ1dSc0uuv5yk0NFQ2W6hcripVVVXphz+MMjoaAAOx9AwAAAAATCg4uINWrHih3tiKFS+wRxFgck1qFFVUVGjGjBkaPXq0xowZo127dsnlcmnq1KlKTEzU1KlTVV5eLknyer1asGCBEhISNH78eH388cfNcgEAAAAAgEs3efIUzZv3iJ55Zomqqqr0zDNLNG/eI5o8eYrR0QAYyOL1er2NffEf/vAHDRw4UJMmTVJNTY2qq6v1l7/8RTabTb/5zW+0dOlSlZeXa+bMmdq2bZteeuklPffcc9qzZ48yMzOVk5PT4Pndbo9crqrGxgPQBp2d9gzAPMLDOxsdAd9BDQaYx6xZ6XrppRW+u55NnjxFCxcuNjoWgBbWUP3V6BlFlZWV+uCDD5SWliZJCg4OVlhYmDZt2qSUlBRJUkpKijZu3ChJvnGLxaIBAwaooqJCTqezsW8PAAAAAGiihQsX6/DhL1VTc1qHD39JkwhA4xtFhw8fVteuXTVr1iylpKRo9uzZqqqq0rFjxxQRESFJCg8P17FjxyRJZWVlior6v03RoqKiVFZW1sT4AAAAAAAAaC6NvuvZ6dOn9cknn2jOnDnq37+/FixYoKVLl9Y7xmKxyGKxNDqc1WqRzRba6NcDaHus1gA+9wAAAK0kNzdH2dmLVVKyT3Z7Hzkc6UpNnWR0LAAGanSjKCoqSlFRUerfv78kafTo0Vq6dKm6desmp9OpiIgIOZ1Ode3aVZIUGRmp0tJS3+tLS0sVGRnZ4Ht4PF7WxwMmwx5FgPmwRxEAGCM3N0dZWfOVnb1ESUkjlZ+/SQ7HdEmiWQSYWKOXnoWHhysqKkqff/65JKmoqEi9e/dWfHy88vLyJEl5eXkaOXKkJPnGvV6vdu/erc6dO/uWqAEAAAAAWld29mJlZy9RbGycgoKCFBsbp+zsJcrOZp8iwMyadNezvXv3avbs2XK73erZs6cWLlyo2tpaORwOHT16VN27d1d2drZsNpu8Xq/mzZun7du367LLLlNWVpZuuOGGBs/PHTcA82FGEWA+zCjyP9RggDlERdl06NCXCgoK8tVgZ/5uF67SUpfR8QC0oIbqr0YvPZOk6667Trm5ueeMr1ix4pwxi8WiRx99tClvBwAAAABoJnZ7HxUXFyk2Ns43VlxcJLu9j4GpABit0UvPAAAAAABtl8ORLodjugoLC+R2u1VYWCCHY7ocjnSjowEwUJNmFAEAAAAA2qazG1ZnZMxUWtqZu55lZMxhI2vA5Jq0R1FLY308YD7sUQSYD3sU+R9qMMB8qMEAc2mo/mLpGQAAAAAAACTRKAIAAAAA05o1K109eoQrODhQPXqEa9Ys9icCzI5GEQAAAACY0KxZ6Vq+/AXNnv2oXK4KzZ79qJYvf4FmEWBy7FEEwK+wPh4wH/Yo8j/UYIA59OgRrtmzH9W990731WDPPLNEmZl/1OHDXxodD0ALYo8iAAAAAEA9NTWnNGXKtHpjU6ZMU03NKYMSAfAHgUYHAAAAAAC0vuDgDkpPv1//+78fqaRkn+z2Prr++n4KDu5gdDQABmJGEQAAAACY0NChw7Rq1WsaPHioysq+1ODBQ7Vq1WsaOnSY0dEAGIhGEQAAAACYUGnpUY0ZM06vvPJXhYd30yuv/FVjxoxTaelRo6MBMBBLzwAAAADAhEpK9mnTpkIFBQX5NrN2u93q2TPc6GgADMSMIgAAAAAwIbu9j4qLi+qNFRcXyW7vY1AiAP6ARhEAAAAAmJDDkS6HY7oKCwvkdrtVWFggh2O6HI50o6MBMBBLzwAAAADAhFJTJ0mSMjJmKi3tzF3PMjLm+MYBmJPF6/V6jQ5xIW63Ry5XldExALSis+vjAZhHeHhnoyPgO6jBAPOhBgPMpaH6i6VnAAAAJuDxeJSSkqJ77rnH6CgAAMCP0SgCAAAwgZUrV6p3795GxwDgZ3JzcxQXF6OQkGDFxcUoNzfH6EgADEajCAAAoJ0rLS3V1q1blZaWZnQUAH4kNzdHWVnzlZW1SJWVJ5WVtUhZWfNpFgEmR6MIAACgncvKytLMmTMVEEDpB+D/ZGcvVnb2EsXGxikoKEixsXHKzl6i7OzFRkcDYCDuegYAANCObdmyRV27dtX111+v4uLi7/Uaq9Uimy20hZMBMFpJyT4lJY1UUFCQrNYA2WyhSkoaqbS0ffwOAEyMRhEAAEA7tnPnTm3evFkFBQU6deqUTpw4ofT0dC1efOEZAx6Pl7sfASZgt/dRfv4mxcbG+e56VlhYILu9D78DgHaOu54BAACY1EMPPaSCggJt3rxZjz/+uAYPHtxgkwiAeTgc6XI4pquwsEBut1uFhQVyOKbL4Ug3OhoAAzGjCAAAAABMKDV1kiQpI2Om0tL2yW7vo4yMOb5xAOZk8Xq9XqNDXIjb7WHKI2AyZ6c9AzCPhqY+wxjUYID5UIMB5sLSMwAAAAAAAFwUjSIAAAAAMKnc3BzFxcUoJCRYcXExys3NMToSAIOxRxEAAAAAmFBubo6ysuYrO3uJkpJGKj9/kxyO6ZLEPkWAiTGjCAAAAABMKDt7sbKzlyg2Nk5BQUGKjY1TdvYSZWdzZ0TAzGgUAQAAAIAJlZTsU0zMkHpjMTFDVFKyz6BEAPwBS88AAAAAwITs9j5avPj/6c0316mkZJ/s9j4aM2ac7PY+RkcDYCBmFAEAAACACQ0bNlxPPfWE7rxzsr7+2qU775ysp556QsOGDTc6GgAD0SgCAAAAABP6+9+3a8aMB/S3v72krl1t+tvfXtKMGQ/o73/fbnQ0AAayeL1er9EhLsTt9sjlqjI6BoBWZLOF8rkHTCY8vLPREfAd1GCAOURF2XTo0JcKCgry1WBut1s9e4artNRldDwALaih+osZRQAAAABgQnZ7HxUXF9UbKy4uYo8iwORoFAEAAACACTkc6XI4pquwsEBut1uFhQVyOKbL4Ug3OhoAA3HXMwAAAAAwodTUSZKkjIyZSks7c9ezjIw5vnEA5sQeRQD8CnsUAebDHkX+hxoMMB9qMMBc2KMIAAAAAAAAF0WjCAAAAAAAAJJoFAEAAAAAAKBOkxtFHo9HKSkpuueeeyRJhw4d0qRJk5SQkCCHw6GamhpJUk1NjRwOhxISEjRp0iQdPny4qW8NAAAAAACAZtTkRtHKlSvVu3dv3+PFixfrrrvu0jvvvKOwsDCtWrVKkpSTk6OwsDC98847uuuuu7R48eKmvjUAAAAAAACaUZMaRaWlpdq6davS0tIkSV6vV++9956SkpIkSRMnTtSmTZskSZs3b9bEiRMlSUlJSSoqKpIf33ANAAAAAADAdJrUKMrKytLMmTMVEHDmNMePH1dYWJgCAwMlSVFRUSorK5MklZWV6corr5QkBQYGqnPnzjp+/HhT3h4AAAAAAADNKLCxL9yyZYu6du2q66+/XsXFxc2ZycdqtchmC22RcwPwT1ZrAJ97AAAAADBIoxtFO3fu1ObNm1VQUKBTp07pxIkTyszMVEVFhU6fPq3AwECVlpYqMjJSkhQZGamjR48qKipKp0+fVmVlpS6//PIG38Pj8crlqmpsRABtkM0WyuceMJnw8M5GRwAAAECdRi89e+ihh1RQUKDNmzfr8ccf1+DBg/XYY48pJiZG+fn5kqTVq1crPj5ekhQfH6/Vq1dLkvLz8zV48GBZLJZmuAQAAAAAAAA0hybf9ey7Zs6cqRdffFEJCQlyuVyaNGmSJCktLU0ul0sJCQl68cUXlZ6e3txvDQAAAAC4BLNmpatHj3AFBweqR49wzZrF39MAs7N4/fjWY263hyUogMmw9AwwH5ae+R9qMMAcZs1K1/LlL+iRR+bp/vun68knl2jevEd0113TtHDhYqPjAWhBDdVfNIoA+BUaRYD50CjyP9RggDn06BGu2bMf1b33TvfVYM88s0SZmX/U4cNfGh0PQAtqqP5q9qVnAAAAAAD/V1NzSlOmTKs3NmXKNNXUnDIoEQB/QKMIAAAAAEwoOLiDVqx4od7YihUvKDi4g0GJAPiDQKMDAAAAAABa3+TJUzRv3iOSpPvvn65nnvm/PYoAmBd7FAHwK+xRBJgPexT5H2owwDxmzUrXSy+tUE3NKQUHd9DkyVPYyBowATazBtBm0CgCzIdGkf+hBgPMhxoMMBc2swYAAAAAAMBF0SgCAAAAAACAJBpFAAAAAAAAqEOjCAAAAAAAAJKkQKMDAAAAoGWdOnVKv/jFL1RTUyOPx6OkpCTNmDHD6FgAAMAP0SgCAABo54KDg7VixQp17NhRbrdbP//5zxUXF6cBAwYYHQ0AAPgZlp4BAAC0cxaLRR07dpQknT59WqdPn5bFYjE4FQAA8Ec0igAAAEzA4/EoOTlZQ4cO1dChQ9W/f3+jIwEAAD/E0jMAAAATsFqtWrNmjSoqKnTfffeppKREdrv9AsdaZLOFtnJCAEayWgP43AOQRKMIAADAVMLCwhQTE6Pt27dfsFHk8XjlclW1cjIARrLZQvncAyYSHt75gs+x9AwAAKCd+/rrr1VRUSFJqq6u1rvvvqtevXoZnAoAAPgjZhQBAAC0c06nUw8//LA8Ho+8Xq9Gjx6tESNGGB0LAAD4IRpFAAAA7dy1116rvLw8o2MAAIA2gKVnAAAAAAAAkESjCAAAAAAAAHVoFAEAAAAAAEASjSIAAAAAAADUoVEEAAAAAAAASTSKAAAAAAAAUIdGEQAAAAAAACTRKAIAAAAAAEAdGkUAAAAAAACQRKMIAAAAAAAAdWgUAQAAAAAAQBKNIgAAAAAAANShUQQAAAAAAABJNIoAAAAAAABQh0YRAAAAAAAAJNEoAgAAAAAAQB0aRQAAAAAAAJBEowgAAAAAAAB1aBQBAAAAAABAEo0iAAAAAAAA1KFRBAAAAAAAAElNaBQdPXpUkydP1q233qqxY8dqxYoVkiSXy6WpU6cqMTFRU6dOVXl5uSTJ6/VqwYIFSkhI0Pjx4/Xxxx83zxUAAAAAAACgWTS6UWS1WvXwww9rw4YNeu211/TKK69o//79Wrp0qYYMGaK3335bQ4YM0dKlSyVJBQUFOnDggN5++23Nnz9fc+fOba5rAAAAAAAAQDNodKMoIiJCffv2lSR16tRJvXr1UllZmTZt2qSUlBRJUkpKijZu3ChJvnGLxaIBAwaooqJCTqez6VcAAAAAAACAZtEsexQdPnxYe/fuVf/+/XXs2DFFRERIksLDw3Xs2DFJUllZmaKionyviYqKUllZWXO8PQAAAAAAAJpBYFNPcPLkSc2YMUMZGRnq1KlTvecsFossFkujz221WmSzhTY1IoA2xGoN4HMPAAAAAAZpUqPI7XZrxowZGj9+vBITEyVJ3bp1k9PpVEREhJxOp7p27SpJioyMVGlpqe+1paWlioyMbPD8Ho9XLldVUyICaGNstlA+94DJhId3NjoCAAAA6jR66ZnX69Xs2bPVq1cvTZ061TceHx+vvLw8SVJeXp5GjhxZb9zr9Wr37t3q3Lmzb4kaAAAAAKD15ebmKC4uRiEhwYqLi1Fubo7RkQAYrNEzij788EOtWbNGdrtdycnJkqQHH3xQv/nNb+RwOLRq1Sp1795d2dnZkqSbb75Z27ZtU0JCgi677DJlZWU1ywUAAAAAAC5dbm6OsrLmKzt7iZKSRio/f5McjumSpNTUSQanA2AUi9fr9Rod4kLcbg9LUACTYekZYD4sPfM/1GCAOcTFxSgra5FiY+N8NVhhYYEyMmaqoKDY6HgAWlBD9Vez3PUMAAAAANC2lJTsU0zMkHpjMTFDVFKyz6BEAPwBjSIAAAAAMCG7vY+Ki4vqjRUXF8lu72NQIgD+gEYRAAAAAJiQw5Euh2O6CgsL5Ha7VVhYIIdjuhyOdKOjATBQozezBgAAAAC0XWc3rM7ImKm0tH2y2/soI2MOG1kDJsdm1gD8CptZA+bDZtb+hxoMMB9qMMBcGqq/mFEEAADQjh09elS///3vdezYMVksFv3sZz/TlClTjI4FAAD8FI0iAACAdsxqterhhx9W3759deLECd12220aNmyYfvzjHxsdDQAA+CE2swYAAGjHIiIi1LdvX0lSp06d1KtXL5WVlRmcCgAA+CsaRQAAACZx+PBh7d27V/379zc6CgAA8FMsPQMAADCBkydPasaMGcrIyFCnTp0aPNZqtchmC22lZAD8gdUawOcegCQaRQAAAO2e2+3WjBkzNH78eCUmJl70eI/Hy92PAJPhrmeAuTR01zOWngEAALRjXq9Xs2fPVq9evTR16lSj4wDwM7m5OYqLi1FISLDi4mKUm5tjdCQABqNRBAAA0I59+OGHWrNmjd577z0lJycrOTlZ27ZtMzoWAD+Qm5ujrKz5yspapMrKk8rKWqSsrPk0iwCTs3i9Xq/RIS7E7fYw/REwGaY9A+bT0NRnGIMaDDCHuLgYZWUtUmxsnK8GKywsUEbGTBUUFBsdD0ALYukZAAAAAKCekpJ9iokZUm8sJmaISkr2GZQIgD+gUQQAAAAAJmS391FxcVG9seLiItntfQxKBMAf0CgCAAAAABNyONLlcExXYWGB3G63CgsL5HBMl8ORbnQ0AAYKNDoAAAAAAKD1paZOkiRlZMxUWto+2e19lJExxzcOwJzYzBqAX2Eza8B82Mza/1CDAeZDDQaYC5tZAwAAAAAA4KJoFAEAAAAAAEASjSIAAAAAAADUoVEEAAAAAAAASTSKAAAAAAAAUIdGEQAAAAAAACTRKAIAAAAAAEAdGkUAAAAAAACQRKMIAAAAAAAAdWgUAQAAAAAAQBKNIgAAAAAAANShUQQAAAAAAABJNIoAAAAAAABQh0YRAAAAAAAAJNEoAgAAAAAAQB0aRQAAAAAAAJBEowgAAAAAAAB1aBQBAAAAAABAEo0iAAAAAAAA1KFRBAAAAAAAAEk0igAAAAAAAFAn0OgAACBJERFh54w5nRUGJAEAAAAA82r1GUUFBQVKSkpSQkKCli5d2tpvD8APna9J1NA4AAAAmkdubo7i4mIUEhKsuLgY5ebmGB0JgMFatVHk8Xg0b948LVu2TOvXr9e6deu0f//+1owAwM8tX77S6AgAAACmkJubo6ys+crKWqTKypPKylqkrKz5NIsAk7N4vV5va73Zrl27tGTJEj3//POSpGeffVaSdM8995z3eLfbI5erqrXiAaZyc+5EWUPKjI7RZniqI7UtdbXRMYB2KTy8s9ER8B3UYIA5xMXFKCtrkWJj42SzhcrlqlJhYYEyMmaqoKDY6HgAWlBD9Ver7lFUVlamqKgo3+PIyEh99NFHrRkBQB1/anqcXWLmdFb4ipRvjwEAAKD5lZTsU0zMkHpjMTFDVFKyz6BEAPyBX29mbbVaZLOFGh0DQCuJiAhTfPxIbd68yTfG7wAAAICWYbf3UXFxkWJj43xjxcVFstv7GJgKgNFatVEUGRmp0tJS3+OysjJFRkZe8HiPx8u0Z8Bkvt0kksTvAMAEWHoGAMZwONLlcExXdvYSJSWNVGFhgRyO6crImGN0NAAGatVG0Q033KADBw7o0KFDioyM1Pr16/XYY4+1ZgQAfsjprDjvHc5YdgYAANByUlMnSZIyMmYqLW2f7PY+ysiY4xsHYE6tupm1JG3btk1ZWVnyeDy67bbbdO+9917wWDZSBMzn7B5FAMyDGUX+hxoMMB9qMMBc/GYza0m6+eabdfPNN7f22wIAAJjWrFmztHXrVnXr1k3r1q0zOg4AAPBjAUYHAAAAQMtKTU3VsmXLjI4BAADaABpFAAAA7dygQYPUpUsXo2MAAIA2gEYRAAAAAAAAJBmwRxEAAAD8m9Vqkc0WanQMAK3Iag3gcw9AEo0iAAAAfIfH4+XuR4DJcNczwFwauusZS88AAAAAAAAgiUYRAABAu/fggw/qjjvu0L/+9S/FxcUpJyfH6EgAAMBPWbxer9foEAAAAAAAADAeM4oAAAAAAAAgiUYRAAAAAAAA6tAoAgAAAAAAgCQaRQAAAAAAAKhDowgAAAAAAACSaBQBAAAAAACgDo0iAC1m8uTJ2r59e72x5cuX69e//rXGjRsnSfrmm2/00EMPafz48Ro3bpzuvPNOnTx5UpIUHR0tSTp8+LD69eun5ORkTZgwQXfccYc+//zz1r0YAACANoIaDEBT0CgC0GLGjRunDRs21BvbsGGD7rnnHt/jlStX6oorrtD//M//aN26dcrMzFRQUNA557r66qu1Zs0arV27VikpKXr22WdbPD8AAEBbRA0GoCloFAFoMUlJSdq6datqamoknflWyul0KioqynfMl19+qcjISN/jXr16KTg4uMHznjhxQmFhYS0TGgAAoI2jBgPQFIFGBwDQftlsNvXr108FBQUaNWqUNmzYoDFjxshisfiOue222zRt2jTl5+dr8ODBmjhxon74wx+ec66DBw8qOTlZJ0+eVHV1tV5//fVWvBIAAIC2gxoMQFMwowhAixo7dqxv6vP69es1duzYes9fd9112rhxo+6++26Vl5crLS1Nn3322TnnOTvteePGjcrIyNCcOXNaJT8AAEBbRA0GoLFoFAFoUSNHjlRRUZE+/vhjVVdX6/rrrz/nmI4dOyoxMVFz587VhAkTtG3btgbPGR8frx07drRUZAAAgDaPGgxAY9EoAtCiOnbsqJiYGGVkZJzzTZYkffjhhyovL5ck1dTUaP/+/erevXuD5/zwww919dVXt0heAACA9oAaDEBjsUcRgBY3btw43XfffXr88cfPee7QoUOaO3euJKm2tlY333yzkpKSzjnu7Pp4r9eroKAgLViwoKVjAwAAtGnUYAAaw+L1er1GhwAAAAAAAIDxWHoGAAAAAAAASTSKAAAAAAAAUIdGEQAAAAAAACTRKAIAAAAAAEAdGkUAAAAAAACQRKMIAAAAAAAAdWgUAQAAAAAAQBKNIgAAAAAAANT5/zKQo8JygJrkAAAAAElFTkSuQmCC\n",
......@@ -733,12 +693,12 @@
"pd.DataFrame(sorstokken[\"VISIB\"][sorstokken[\"VISIB\"] < 999.9]).boxplot(\n",
" ax=axes[1]\n",
")\n",
"axes[1].set_title(\"Visibility excluding sentinels\")"
"axes[1].set_title(\"Visibility excluding sentinels\");"
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 13,
"id": "b86b9b61-a39b-455b-a3c0-2ba5ca32b2e3",
"metadata": {},
"outputs": [
......@@ -756,7 +716,7 @@
"Name: GUST, dtype: float64"
]
},
"execution_count": 12,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
......@@ -774,7 +734,43 @@
"Name: GUST, dtype: float64"
]
},
"execution_count": 12,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
"count 299.000000\n",
"mean 75.746154\n",
"std 254.425358\n",
"min 1.200000\n",
"25% 6.200000\n",
"50% 6.200000\n",
"75% 6.200000\n",
"max 999.900000\n",
"Name: VISIB, dtype: float64"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
"count 278.000000\n",
"mean 5.935971\n",
"std 0.672031\n",
"min 1.200000\n",
"25% 6.100000\n",
"50% 6.200000\n",
"75% 6.200000\n",
"max 6.800000\n",
"Name: VISIB, dtype: float64"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
......@@ -787,7 +783,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 14,
"id": "b2835698-504e-43e2-90df-09265de35f55",
"metadata": {},
"outputs": [
......@@ -823,7 +819,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 15,
"id": "7279b418-c3a3-4066-a71c-e729b54764d9",
"metadata": {},
"outputs": [],
......@@ -837,7 +833,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 16,
"id": "902afe62-0ee6-4e5f-b3c0-8ce760a0be1c",
"metadata": {},
"outputs": [
......@@ -929,7 +925,7 @@
"4 1001499999 2019-01-06 42.5 1.9 NaN 42.5"
]
},
"execution_count": 15,
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
......@@ -973,7 +969,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 17,
"id": "7b89a886-33ab-480c-bdf6-d2ac032991b5",
"metadata": {},
"outputs": [],
......@@ -1032,7 +1028,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 18,
"id": "5ab0ec07-3af9-4d9e-92a8-af913edf37dc",
"metadata": {},
"outputs": [],
......@@ -1052,7 +1048,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 19,
"id": "a6fdbb73-228a-403d-8766-8c986432509c",
"metadata": {},
"outputs": [
......@@ -1650,7 +1646,7 @@
"[366 rows x 35 columns]"
]
},
"execution_count": 18,
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
......@@ -1662,7 +1658,7 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 20,
"id": "6a83cb7a-2eba-4abe-b793-5d17881e9c90",
"metadata": {},
"outputs": [
......@@ -1683,7 +1679,7 @@
"Length: 35, dtype: object"
]
},
"execution_count": 19,
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
......@@ -1704,7 +1700,7 @@
"Length: 35, dtype: object"
]
},
"execution_count": 19,
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
......@@ -1725,7 +1721,7 @@
"Length: 35, dtype: object"
]
},
"execution_count": 19,
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
......@@ -1763,7 +1759,7 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 21,
"id": "5286816f-dbef-4a9f-8f86-b04c6f7f0696",
"metadata": {},
"outputs": [],
......@@ -1773,7 +1769,7 @@
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 22,
"id": "4ff1b571-5e84-42f2-8c71-45708ca50082",
"metadata": {},
"outputs": [
......@@ -1840,6 +1836,111 @@
" <td>14.6</td>\n",
" <td>green</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9110</th>\n",
" <td>164.631065</td>\n",
" <td>70.557834</td>\n",
" <td>25.9</td>\n",
" <td>green</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21196</th>\n",
" <td>171.989674</td>\n",
" <td>73.962050</td>\n",
" <td>9.2</td>\n",
" <td>blue</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17193</th>\n",
" <td>176.560404</td>\n",
" <td>80.627266</td>\n",
" <td>87.7</td>\n",
" <td>blue</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23846</th>\n",
" <td>173.640191</td>\n",
" <td>82.887089</td>\n",
" <td>2.3</td>\n",
" <td>blue</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10415</th>\n",
" <td>171.658356</td>\n",
" <td>61.822810</td>\n",
" <td>12.5</td>\n",
" <td>green</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9018</th>\n",
" <td>168.944112</td>\n",
" <td>73.655490</td>\n",
" <td>10.9</td>\n",
" <td>blue</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24056</th>\n",
" <td>178.264693</td>\n",
" <td>61.845006</td>\n",
" <td>20.1</td>\n",
" <td>red</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19992</th>\n",
" <td>168.593211</td>\n",
" <td>67.985889</td>\n",
" <td>3.6</td>\n",
" <td>red</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11464</th>\n",
" <td>171.199378</td>\n",
" <td>70.099916</td>\n",
" <td>3.2</td>\n",
" <td>red</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10641</th>\n",
" <td>180.053056</td>\n",
" <td>80.113027</td>\n",
" <td>2.6</td>\n",
" <td>green</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7192</th>\n",
" <td>176.002975</td>\n",
" <td>82.433415</td>\n",
" <td>25.5</td>\n",
" <td>red</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2164</th>\n",
" <td>170.968568</td>\n",
" <td>67.363479</td>\n",
" <td>2.5</td>\n",
" <td>green</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2277</th>\n",
" <td>178.556996</td>\n",
" <td>77.683951</td>\n",
" <td>0.0</td>\n",
" <td>green</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6038</th>\n",
" <td>169.736948</td>\n",
" <td>62.588836</td>\n",
" <td>17.9</td>\n",
" <td>red</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15100</th>\n",
" <td>170.345532</td>\n",
" <td>69.045914</td>\n",
" <td>33.3</td>\n",
" <td>red</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
......@@ -1850,22 +1951,37 @@
"9488 169.000221 79.559843 0.0 blue\n",
"16933 171.104306 71.125528 5.5 red\n",
"12604 174.481084 79.496237 8.1 blue\n",
"8222 171.275578 77.094118 14.6 green"
"8222 171.275578 77.094118 14.6 green\n",
"9110 164.631065 70.557834 25.9 green\n",
"21196 171.989674 73.962050 9.2 blue\n",
"17193 176.560404 80.627266 87.7 blue\n",
"23846 173.640191 82.887089 2.3 blue\n",
"10415 171.658356 61.822810 12.5 green\n",
"9018 168.944112 73.655490 10.9 blue\n",
"24056 178.264693 61.845006 20.1 red\n",
"19992 168.593211 67.985889 3.6 red\n",
"11464 171.199378 70.099916 3.2 red\n",
"10641 180.053056 80.113027 2.6 green\n",
"7192 176.002975 82.433415 25.5 red\n",
"2164 170.968568 67.363479 2.5 green\n",
"2277 178.556996 77.683951 0.0 green\n",
"6038 169.736948 62.588836 17.9 red\n",
"15100 170.345532 69.045914 33.3 red"
]
},
"execution_count": 21,
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# look at sample\n",
"humans.sample(5, random_state=1)"
"humans.sample(20, random_state=1)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"execution_count": 23,
"id": "1cb4ad60-1d4b-4f87-bd51-340c5012a218",
"metadata": {},
"outputs": [
......@@ -1876,7 +1992,7 @@
" 'chartreuse'], dtype=object)"
]
},
"execution_count": 22,
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
......@@ -1888,7 +2004,7 @@
},
{
"cell_type": "code",
"execution_count": 23,
"execution_count": 24,
"id": "aeb97307-c7cd-4aca-ac0e-ca43325ac5ad",
"metadata": {},
"outputs": [
......@@ -1906,7 +2022,7 @@
"Name: Favorite, dtype: int64"
]
},
"execution_count": 23,
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
......@@ -1926,7 +2042,7 @@
},
{
"cell_type": "code",
"execution_count": 24,
"execution_count": 25,
"id": "e0d9609a-1a45-4727-b2a0-f5153a83e3e0",
"metadata": {},
"outputs": [
......@@ -1954,7 +2070,7 @@
},
{
"cell_type": "code",
"execution_count": 25,
"execution_count": 26,
"id": "5e76c750-1925-45f1-8909-73853079737a",
"metadata": {},
"outputs": [
......@@ -1967,7 +2083,7 @@
"Name: Favorite, dtype: int64"
]
},
"execution_count": 25,
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
......@@ -1999,7 +2115,7 @@
},
{
"cell_type": "code",
"execution_count": 26,
"execution_count": 27,
"id": "420205a3-2266-4441-a8de-4d86d5ad9605",
"metadata": {},
"outputs": [
......@@ -2009,7 +2125,7 @@
"False"
]
},
"execution_count": 26,
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
......@@ -2021,7 +2137,7 @@
},
{
"cell_type": "code",
"execution_count": 27,
"execution_count": 28,
"id": "8aea02dd-a13a-4753-9d12-c8834de31c1e",
"metadata": {},
"outputs": [
......@@ -2031,19 +2147,19 @@
"True"
]
},
"execution_count": 27,
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# any humans exceeding the given bounds for height?\n",
"# any humans exceeding the given bounds for hair length?\n",
"(humans.Hair_Length > 120).any()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"execution_count": 29,
"id": "bae0e98a-df8c-426f-8671-23bc79bacd5d",
"metadata": {},
"outputs": [
......@@ -2131,7 +2247,7 @@
"17093 169.771111 77.958278 133.2 blue"
]
},
"execution_count": 28,
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
......@@ -2151,7 +2267,7 @@