08_hypothesis_testing.ipynb 58.7 KB
Newer Older
Eva Zangerle's avatar
Eva Zangerle committed
1
2
3
4
5
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "edd718da-1295-49c4-b556-3cc7b718f93c",
Eva Zangerle's avatar
Eva Zangerle committed
6
7
8
   "metadata": {
    "tags": []
   },
Eva Zangerle's avatar
Eva Zangerle committed
9
10
11
12
13
14
15
16
   "source": [
    "# Hypothesis Testing\n",
    "Lecture Data Engineering and Analytics<br>\n",
    "Eva Zangerle"
   ]
  },
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
17
   "execution_count": 2,
Eva Zangerle's avatar
Eva Zangerle committed
18
19
20
21
22
23
24
25
   "id": "5b126eda-5b79-4531-b8ea-72898d09dc6d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# import required packages\n",
    "import os\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
Eva Zangerle's avatar
Eva Zangerle committed
26
27
    "import numpy as np\n",
    "import pandas as pd\n",
Eva Zangerle's avatar
Eva Zangerle committed
28
29
30
31
32
33
    "import seaborn as sns\n",
    "from sklearn.utils import resample"
   ]
  },
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
34
   "execution_count": 3,
Eva Zangerle's avatar
Eva Zangerle committed
35
36
37
38
39
40
41
   "id": "5406f6f3-1c06-4f3b-aaaf-9ac6f2967729",
   "metadata": {},
   "outputs": [],
   "source": [
    "data_dir = \"../data\""
   ]
  },
42
43
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
44
   "execution_count": 4,
45
46
47
48
49
50
51
52
53
   "id": "29a380d3-d574-47d1-8649-98bbd9c58edf",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Author: Eva Zangerle\n",
      "\n",
Eva Zangerle's avatar
Eva Zangerle committed
54
      "Last updated: 2021-12-07 15:52:08\n",
55
56
57
58
59
60
61
62
63
      "\n"
     ]
    }
   ],
   "source": [
    "%load_ext watermark\n",
    "%watermark -a \"Eva Zangerle\" -u -d -t"
   ]
  },
Eva Zangerle's avatar
Eva Zangerle committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  {
   "cell_type": "markdown",
   "id": "c4abdb51-195d-40d4-a46e-acacdd63e517",
   "metadata": {},
   "source": [
    "## Central Limit Theorem"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "33556303-a6c5-4637-aa75-c319ccc1aaba",
   "metadata": {},
   "source": [
    "In the following, we will investigate the central limit theorem. Code is adopted from (PracticalStatistics) https://github.com/gedeck/practical-statistics-for-data-scientists/. "
   ]
  },
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
82
   "execution_count": 5,
Eva Zangerle's avatar
Eva Zangerle committed
83
84
85
86
87
88
89
90
91
92
93
   "id": "656050b5-45a5-4813-a228-e4b9ba03a111",
   "metadata": {},
   "outputs": [],
   "source": [
    "loans_income = pd.read_csv(\n",
    "    os.path.join(data_dir, \"loans_income.csv\"), squeeze=True\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
94
   "execution_count": 6,
Eva Zangerle's avatar
Eva Zangerle committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
   "id": "c0ef827e-8e5e-412f-a6ee-fe57f183d47e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0         67000\n",
       "1         52000\n",
       "2        100000\n",
       "3         78762\n",
       "4         37041\n",
       "          ...  \n",
       "49995     40000\n",
       "49996     54000\n",
       "49997     50000\n",
       "49998     82000\n",
       "49999     70000\n",
       "Name: x, Length: 50000, dtype: int64"
      ]
     },
Eva Zangerle's avatar
Eva Zangerle committed
115
     "execution_count": 6,
Eva Zangerle's avatar
Eva Zangerle committed
116
117
118
119
120
121
122
123
124
125
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "loans_income"
   ]
  },
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
126
   "execution_count": 7,
Eva Zangerle's avatar
Eva Zangerle committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
   "id": "668ab92d-218b-45bd-b3dc-ca4dbad4013e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# sample 1000 rows\n",
    "sample_data = pd.DataFrame(\n",
    "    {\n",
    "        \"income\": loans_income.sample(1000),\n",
    "        \"type\": \"Data\",\n",
    "    }\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
142
   "execution_count": 8,
Eva Zangerle's avatar
Eva Zangerle committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
   "id": "f65ee2f1-c5bb-4146-9645-711fa3a2dce6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>income</th>\n",
       "      <th>type</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
Eva Zangerle's avatar
Eva Zangerle committed
173
174
       "      <th>48305</th>\n",
       "      <td>70000.00</td>\n",
Eva Zangerle's avatar
Eva Zangerle committed
175
176
177
       "      <td>Data</td>\n",
       "    </tr>\n",
       "    <tr>\n",
Eva Zangerle's avatar
Eva Zangerle committed
178
179
       "      <th>10739</th>\n",
       "      <td>88224.00</td>\n",
Eva Zangerle's avatar
Eva Zangerle committed
180
181
182
       "      <td>Data</td>\n",
       "    </tr>\n",
       "    <tr>\n",
Eva Zangerle's avatar
Eva Zangerle committed
183
184
       "      <th>977</th>\n",
       "      <td>39500.00</td>\n",
Eva Zangerle's avatar
Eva Zangerle committed
185
186
187
       "      <td>Data</td>\n",
       "    </tr>\n",
       "    <tr>\n",
Eva Zangerle's avatar
Eva Zangerle committed
188
189
       "      <th>24707</th>\n",
       "      <td>65000.00</td>\n",
Eva Zangerle's avatar
Eva Zangerle committed
190
191
192
       "      <td>Data</td>\n",
       "    </tr>\n",
       "    <tr>\n",
Eva Zangerle's avatar
Eva Zangerle committed
193
194
       "      <th>46225</th>\n",
       "      <td>75000.00</td>\n",
Eva Zangerle's avatar
Eva Zangerle committed
195
196
197
198
199
200
201
202
203
       "      <td>Data</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4995</th>\n",
Eva Zangerle's avatar
Eva Zangerle committed
204
       "      <td>73199.60</td>\n",
Eva Zangerle's avatar
Eva Zangerle committed
205
206
207
208
       "      <td>Mean of 20, 5000 samples</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4996</th>\n",
Eva Zangerle's avatar
Eva Zangerle committed
209
       "      <td>62895.20</td>\n",
Eva Zangerle's avatar
Eva Zangerle committed
210
211
212
213
       "      <td>Mean of 20, 5000 samples</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4997</th>\n",
Eva Zangerle's avatar
Eva Zangerle committed
214
       "      <td>58149.70</td>\n",
Eva Zangerle's avatar
Eva Zangerle committed
215
216
217
218
       "      <td>Mean of 20, 5000 samples</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4998</th>\n",
Eva Zangerle's avatar
Eva Zangerle committed
219
       "      <td>67940.85</td>\n",
Eva Zangerle's avatar
Eva Zangerle committed
220
221
222
223
       "      <td>Mean of 20, 5000 samples</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4999</th>\n",
Eva Zangerle's avatar
Eva Zangerle committed
224
       "      <td>78757.00</td>\n",
Eva Zangerle's avatar
Eva Zangerle committed
225
226
227
228
229
230
231
232
       "      <td>Mean of 20, 5000 samples</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>9000 rows × 2 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
Eva Zangerle's avatar
Eva Zangerle committed
233
234
235
236
237
238
239
240
241
242
243
244
       "         income                      type\n",
       "48305  70000.00                      Data\n",
       "10739  88224.00                      Data\n",
       "977    39500.00                      Data\n",
       "24707  65000.00                      Data\n",
       "46225  75000.00                      Data\n",
       "...         ...                       ...\n",
       "4995   73199.60  Mean of 20, 5000 samples\n",
       "4996   62895.20  Mean of 20, 5000 samples\n",
       "4997   58149.70  Mean of 20, 5000 samples\n",
       "4998   67940.85  Mean of 20, 5000 samples\n",
       "4999   78757.00  Mean of 20, 5000 samples\n",
Eva Zangerle's avatar
Eva Zangerle committed
245
246
247
248
       "\n",
       "[9000 rows x 2 columns]"
      ]
     },
Eva Zangerle's avatar
Eva Zangerle committed
249
     "execution_count": 8,
Eva Zangerle's avatar
Eva Zangerle committed
250
251
252
253
254
255
256
257
258
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# draw random samples from sample data\n",
    "sample_mean_05 = pd.DataFrame(\n",
    "    {\n",
    "        \"income\": [loans_income.sample(5).mean() for _ in range(1000)],\n",
Eva Zangerle's avatar
Eva Zangerle committed
259
    "        \"type\": \"Mean of 5 samples\",\n",
Eva Zangerle's avatar
Eva Zangerle committed
260
261
262
263
264
265
    "    }\n",
    ")\n",
    "\n",
    "sample_mean_20 = pd.DataFrame(\n",
    "    {\n",
    "        \"income\": [loans_income.sample(20).mean() for _ in range(1000)],\n",
Eva Zangerle's avatar
Eva Zangerle committed
266
    "        \"type\": \"Mean of 20 samples\",\n",
Eva Zangerle's avatar
Eva Zangerle committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    "    }\n",
    ")\n",
    "\n",
    "\n",
    "sample_mean_20_2 = pd.DataFrame(\n",
    "    {\n",
    "        \"income\": [loans_income.sample(20).mean() for _ in range(5000)],\n",
    "        \"type\": \"Mean of 20, 5000 samples\",\n",
    "    }\n",
    ")\n",
    "\n",
    "sample_mean_50 = pd.DataFrame(\n",
    "    {\n",
    "        \"income\": [loans_income.sample(50).mean() for _ in range(1000)],\n",
Eva Zangerle's avatar
Eva Zangerle committed
281
    "        \"type\": \"Mean of 50 samples\",\n",
Eva Zangerle's avatar
Eva Zangerle committed
282
283
284
285
286
287
288
289
290
291
292
293
    "    }\n",
    ")\n",
    "\n",
    "results = pd.concat(\n",
    "    [\n",
    "        sample_data,\n",
    "        sample_mean_05,\n",
    "        sample_mean_20,\n",
    "        sample_mean_50,\n",
    "        sample_mean_20_2,\n",
    "    ]\n",
    ")\n",
Eva Zangerle's avatar
Eva Zangerle committed
294
    "\n",
Eva Zangerle's avatar
Eva Zangerle committed
295
296
297
298
299
300
301
302
303
304
305
306
307
    "results"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "15624c1f-fa95-4f15-80a6-8ae83ebb56f8",
   "metadata": {},
   "source": [
    "When inspecting the plots of the statistic distributions, we observe that the larger our samples are, the more similar the statistic distribution (distribution of means of samples) gets compared to a normal distribution."
   ]
  },
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
308
   "execution_count": 9,
Eva Zangerle's avatar
Eva Zangerle committed
309
310
311
312
313
   "id": "52383e17-e209-4b42-85f0-b364b25ee70c",
   "metadata": {},
   "outputs": [
    {
     "data": {
Eva Zangerle's avatar
Eva Zangerle committed
314
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAARkAAALICAYAAABLmoQAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6mUlEQVR4nO3de5QdZZ3v//eHcAmXSBITs/IjxIDEow7KZZqAiE6QYwyoE3UQ5KDJYdAcFV2HcWAZFs4PhFmeeIajHGAEImYIDoKAMITLJMYYwPFwSQsxCZ5gAiY/EiEXYKKIt8D390c9e1LZ6XRXd++nd+/dn9dae+2qp6p2fXen+5Onntq7ShGBmVkuezW7ADNrbw4ZM8vKIWNmWTlkzCwrh4yZZeWQMbOsHDLWUJJelbRC0pOSfibpbyV1+3smaZKk/zJQNdrAcshYo/0uIo6OiD8D3gecClzSwzaTAIdMm5I/jGeNJOnliDioNH84sBwYA7wR+A5wYFr8+Yj4P5IeAd4K/BJYANzV1XoD9BaswRwy1lD1IZPa/h34T8BvgNci4veSJgO3RESHpKnABRHxwbT+AV2tN5Dvwxpn72YXYEPKPsA1ko4GXgXe3M/1rAU4ZCyrdLj0KrCFYmxmM3AUxXjg7/ew2d9UXM9agAd+LRtJY4HrgGuiOC4/GHguIl4DPgkMS6v+BhhR2nRP61kL8piMNZSkV4FVFIc8OygGcL8eEa+l8ZXvAwEsAs6LiIMk7QMsBl4P3Ajc29V6A/1erDEcMmaWlQ+XzCwrh4yZZeWQMbOsHDJmllVbhsz06dOD4syEH3740f9Hv7RlyGzbtq3ZJZhZ0pYhY2aDh0PGzLJyyJhZVg4ZM8vKIWNmWTlkzCwrh4yZZeWQMbOsHDJmlpVDxsyycsiYWVYOGTPLyiFjZlk5ZMwsK4eMmWXlkDGzrBwyZpaVQ8bMsnLImFlWDhkzy8ohY2ZZOWTMLCuHjJll5ZAxs6wcMmaWlUPGzLJyyJhZVg4ZM8sqW8hImi9pi6TVpbbRkpZIWpueR6V2SbpK0jpJKyUdW9pmVlp/raRZueo1szxy9mRuBKbXtc0BlkbEZGBpmgc4FZicHrOBa6EIJeAS4HhgCnBJLZjMrDVkC5mIeAh4sa55BrAgTS8APlxqvykKjwAjJY0H3g8siYgXI+IlYAm7B5eZDWIDPSYzLiKeS9PPA+PS9CHAs6X1Nqa2PbXvRtJsSZ2SOrdu3drYqs2sz5o28BsRAUQDX29eRHRERMfYsWMb9bJm1k8DHTKb02EQ6XlLat8EHFpab0Jq21O7mbWIgQ6ZhUDtDNEs4O5S+8x0lukEYHs6rFoMTJM0Kg34TkttZtYi9s71wpJuAaYCYyRtpDhLNBe4TdK5wAbgjLT6/cBpwDrgFeAcgIh4UdLlwPK03mURUT+YbGaDmIqhkfbS0dERnZ2dzS7DrF2oPxv7E79mlpVDxsyyqhQykt5Vpc3MrF7VnszVFdvMzHbR7dklSe8ETgTGSvpiadHrgGE5CzOz9tDTKex9gYPSeiNK7b8GTs9VlJm1j25DJiIeBB6UdGNEbBigmsysjVT9MN5+kuYBk8rbRMR7cxRlZu2jasjcDlwH3AC8mq8cM2s3VUNmR0Rcm7USM2tLVU9h3yPpc5LGp0tojk5XrTMz61bVnkztm9MXltoCOLyx5ZhZu6kUMhFxWO5CzKw9VQoZSTO7ao+Imxpbjpm1m6qHS8eVpocDpwCPAw4ZM+tW1cOlL5TnJY0Ebs1RkJm1l75e6uG3gMdpzKxHVcdk7mHnnQWGAW8FbstVlJm1j6pjMleUpncAGyJiY4Z6zKzNVDpcSl+UXEPxTexRwB9zFmVm7aPqlfHOAB4DPkZxh4FHJflSD2bWo6qHSxcDx0XEFgBJY4EfAnfkKszM2kPVs0t71QImeaEX25rZEFa1J7NI0mLgljR/JsUN2czMutXTNX6PAMZFxIWSPgqclBY9DNycuzgza3099WSuBC4CiIg7gTsBJL09LftQxtrMrA30NK4yLiJW1TemtklZKjKzttJTyIzsZtn+fd2ppPWSVklaIakztY2WtETS2vQ8KrVL0lWS1klaKenYvu7XzAZeTyHTKenT9Y2SPgX8tJ/7Pjkijo6IjjQ/B1gaEZOBpWke4FRgcnrMBnwZULMW0tOYzPnAXZLOZmeodFDcj+kjDa5lBjA1TS8AHgC+lNpviogAHpE0UtL4iHiuwfs3swx6uu/SZuBESScDR6bm+yLiR/3cbwA/kBTA9RExj2L8pxYczwPj0vQhwLOlbTemNoeMWQuoej2ZZcCyBu73pIjYJOkNwBJJa+r2FymAKpM0m+JwiokTJzauUjPrl6Z8ajciNqXnLcBdwBRgs6TxAOm59gnjTcChpc0npLb615wXER0R0TF27Nic5ZtZLwx4yEg6UNKI2jQwDVgNLGTnXRFmAXen6YXAzHSW6QRgu8djzFpH1a8VNNI4isHk2v6/GxGLJC0HbpN0LrCB4tveUHx94TRgHfAKcM7Al2xmfTXgIRMRzwBHddH+AsUFyuvbAzhvAEozswz8TWozy8ohY2ZZOWTMLCuHjJll5ZAxs6wcMmaWlUPGzLJyyJhZVg4ZM8vKIWNmWTlkzCwrh4yZZeWQMbOsHDJmlpVDxsyycsiYWVYOGTPLyiFjZlk5ZMwsK4eMmWXlkDGzrBwyZpaVQ8bMsnLImFlWDhkzy6oZt6m1Hkyac99ubevnfqAJlZj1n0OmRXQVPF3pKowcWtZMKm413V46Ojqis7Oz2WVUVjVAcnLoWDfUn41bpicjaTrwv4FhwA0RMbfJJfXJYAiUrlTt7bhXZL3VEj0ZScOAXwDvAzYCy4GzIuLnXa0/WHoygzVQBguHU8sYEj2ZKcC6iHgGQNKtwAygy5DJzeHRGM34OTrYBl6rhMwhwLOl+Y3A8eUVJM0GZqfZlyU9VeF1xwDbGlJhc7j+XtLXGvpyQ+Xnvygipvd1J60SMj2KiHnAvN5sI6kzIjoylZSd628u119Nq3wYbxNwaGl+Qmozs0GuVUJmOTBZ0mGS9gU+Dixsck1mVkFLHC5FxA5JnwcWU5zCnh8RTzbgpXt1eDUIuf7mcv0VtMQpbDNrXa1yuGRmLcohY2ZZOWTMLCuHjJll5ZAxs6wcMmaWlUPGzLJyyJhZVg4ZM8vKIWNmWTlkzCwrh4yZZeWQaQOSQtI/l+b3lrRV0r1NquctklZIekLSm+qWPSDpqbR8haQ3NKPGUj2TJK1uZg3triUu9WA9+i1wpKT9I+J3FBdcb+ZFvT4M3BERf7+H5WdHRPOv9G4Dwj2Z9nE/ULtK9lnALbUFkg6UNF/SY6l3MSO1T5L0Y0mPp8eJqX1q6nHcIWmNpJsl7XbFeklHS3pE0kpJd0kaJek04Hzgs5KW9eWNSPqLUk/nCUkjJB0kaWmqc1Xde1gj6UZJv0i1/mdJP5G0VtKUtN6lkr4j6eHU/uku9jtM0j9IWp7e039L7eMlPZTqWS3p3X15X0NWRPjR4g/gZeAdwB3AcGAFMBW4Ny3/KvCJND2S4vYyBwIHAMNT+2SgM01PBbZTXOZ0L+Bh4KQu9rsS+Is0fRlwZZq+FLhgD7U+AKxKNf4d6ZpGdevcA7wrTR9E0ePeG3hdahsDrKO4VcckYAfw9lTrT4H5adkM4F9KNf0M2D9t/yzw/6TtV6d1ZgNfTtP7AZ3AYcDfAhen9mHAiGb/m7fSw4dLbSIiVkqaRNGLub9u8TTgLyVdkOaHAxOBXwHXSDoaeBV4c2mbxyJiI4CkFRR/jP9WWyjpYGBkRDyYmhYAt1co9eyI2CRpBPB94JPATXXr/AT4uqSbgTsjYqOkfYCvSnoP8BrFHSzGpfV/GRGrUl1PAksjIiStSnXX3B3F4eTvUi9rCkXYlX9O75B0epo/mCJ8lwPzUw3/EhHlbawHDpn2shC4gqIn8vpSu4C/iohdbhMj6VJgM3AURS/g96XFfyhNv0qDflciYlN6/o2k71L8od9Ut85cSfcBpwE/kfR+4ARgLPDnEfEnSespwrK+1tdK86/V1V1/Gcj6eQFfiIjF9XWncPsAcKOkr0dEfTDaHnhMpr3MB75S+1+9ZDHwhdq4iqRjUvvBwHMR8RpFj2JY1R1FxHbgpdL4xCeBB7vZpHbWa0ya3gf4ILDbmR1Jb4qIVRHxNYpexFtSrVtSwJwMvLFqrSUzJA2X9HqKIF5et3wxxVjSPqmON6fxrDcCmyPiW8ANwLF92PeQ5Z5MG0mHN1d1sehy4EpgpaS9gF9S/IF/E/i+pJnAIoqzVL0xC7hO0gHAM8A5Pay/H7A4/REPA34IfKuL9c5PQfIa8CTwr8AI4J50CNQJrOllrVCMIS2jGJO5PCJ+lQ4xa26gOLx6PAXyVoozZVOBCyX9iWL8a2Yf9j1k+ULiNiSkQ8OXI+KKZtcy1Phwycyyck/GzLJyT8bMsnLImFlWbRky06dPD4rPQPjhhx/9f/RLW4bMtm3bml2CmSVtGTJmNng4ZMwsK4eMmWXlkDGzrBwyZpaVQ8bMsnLImFlWDhkzy8ohY2ZZOWTMLCuHjJll5ZAxs6wcMmaWlUPGzLJyyJhZVg4ZM8vKIWNmWTlkzCwrh4yZZeWQMbOsHDJmlpVDxsyycsiYWVYOGTPLyiFjZlk5ZMwsK4eMmWWVLWQkzZe0RdLqUttoSUskrU3Po1K7JF0laZ2klZKOLW0zK62/VtKsXPWaWR45ezI3AtPr2uYASyNiMrA0zQOcCkxOj9nAtVCEEnAJcDwwBbikFkxm1hqyhUxEPAS8WNc8A1iQphcAHy613xSFR4CRksYD7weWRMSLEfESsITdg8vMBrGBHpMZFxHPpenngXFp+hDg2dJ6G1PbntrNrEU0beA3IgKIRr2epNmSOiV1bt26tVEva2b9NNAhszkdBpGet6T2TcChpfUmpLY9te8mIuZFREdEdIwdO7bhhZtZ3wx0yCwEameIZgF3l9pnprNMJwDb02HVYmCapFFpwHdaajOzFrF3rheWdAswFRgjaSPFWaK5wG2SzgU2AGek1e8HTgPWAa8A5wBExIuSLgeWp/Uui4j6wWQzG8RUDI20l46Ojujs7Gx2GWbtQv3Z2J/4NbOsHDJmlpVDxsyyqhQykt5Vpc3MrF7VnszVFdvMzHbR7SlsSe8ETgTGSvpiadHrgGE5CzOz9tDT52T2BQ5K640otf8aOD1XUWbWProNmYh4EHhQ0o0RsWGAajKzNlL1E7/7SZoHTCpvExHvzVGUmbWPqiFzO3AdcAPwar5yzKzdVA2ZHRFxbdZKzKwtVT2FfY+kz0kan67TOzpdGtPMrFtVezK1yzNcWGoL4PDGlmNm7aZSyETEYbkLMbP2VClkJM3sqj0ibmpsOWbWbqoeLh1Xmh4OnAI8DjhkzKxbVQ+XvlCelzQSuDVHQWbWXvp6qYffAh6nMbMeVR2TuYedty8ZBrwVuC1XUWbWPqqOyVxRmt4BbIiIjRnqMbM2U+lwKX1Rcg3FN7FHAX/MWZSZtY+qV8Y7A3gM+BjFbUweleRLPZhZj6oeLl0MHBcRWwAkjQV+CNyRqzAzaw9Vzy7tVQuY5IVebGtmQ1jVnswiSYuBW9L8mRR3fTQz61ZP1/g9AhgXERdK+ihwUlr0MHBz7uLMrPX11JO5ErgIICLuBO4EkPT2tOxDGWszszbQ07jKuIhYVd+Y2iZlqcjM2kpPITOym2X793WnktZLWiVphaTO1DZa0hJJa9PzqNQuSVdJWidppaRj+7pfMxt4PYVMp6RP1zdK+hTw037u++SIODoiOtL8HGBpREwGlqZ5gFOByekxG/BlQM1aSE9jMucDd0k6m52h0kFxP6aPNLiWGcDUNL0AeAD4Umq/KSICeETSSEnjI+K5Bu/fzDLo6b5Lm4ETJZ0MHJma74uIH/VzvwH8QFIA10fEPIrxn1pwPA+MS9OHAM+Wtt2Y2nYJGUmzKXo6TJw4sZ/lmVmjVL2ezDJgWQP3e1JEbJL0BmCJpDV1+4sUQJWloJoH0NHR0attzSyfpnxqNyI2pectwF3AFGCzpPEA6bn2CeNNwKGlzSekNjNrAQMeMpIOlDSiNg1MA1YDC9l5V4RZwN1peiEwM51lOgHY7vEYs9ZR9WsFjTSOYjC5tv/vRsQiScuB2ySdC2yg+LY3FF9fOA1YB7wCnDPwJZtZXw14yETEM8BRXbS/QHGB8vr2AM4bgNLMLAN/k9rMsnLImFlWDhkzy8ohY2ZZOWTMLCuHjJll5ZAxs6wcMmaWlUPGzLJyyJhZVg4ZM8vKIWNmWTlkzCwrh4yZZeWQMbOsHDJmlpVDxsyycsiYWVYOGTPLyiFjZlk5ZMwsq2bcEsUGgUlz7ttlfv3cDzSpEmt3DpkhoD5QzAaSQ6bN9DVQqm7nHo/1lsdkzCwr92RamA+DrBU4ZFqEA8ValUPGesVjN9ZbLRMykqYD/xsYBtwQEXObXJJ1w6fIraYlQkbSMOAfgfcBG4HlkhZGxM+bW5lV1VUPyMEzNLREyABTgHUR8QyApFuBGUBbhsxQGX9x8AwNrRIyhwDPluY3AseXV5A0G5idZl+W9FSF1x0DbGtIhc3RdvXra02qpG/a7ue/B4siYnpfd9IqIdOjiJgHzOvNNpI6I6IjU0nZuf7mcv3VtMqH8TYBh5bmJ6Q2MxvkWiVklgOTJR0maV/g48DCJtdkZhW0xOFSROyQ9HlgMcUp7PkR8WQDXrpXh1eDkOtvLtdfgSJiIPZjZkNUqxwumVmLcsiYWVYOGTPLyiFjZlk5ZMwsK4eMmWXlkDGzrBwyZpaVQ8bMsnLImFlWDhkzy8ohY2ZZOWRalKSQ9M+l+b0lbZV0b5PqeYukFZKekPSmUvsBku6TtEbSk5LmlpbtJ+l7ktZJelTSpGbUXiZpvaQxza6jnThkWtdvgSMl7Z/m30dzL+T1YeCOiDgmIp6uW3ZFRLwFOAZ4l6RTU/u5wEsRcQTwDaC1Lr5plThkWtv9QO3K22cBt9QWSDpQ0nxJj6XexYzUPknSjyU9nh4npvapkh6QdEfqddwsSfU7lHS0pEckrZR0l6RRkk4Dzgc+K2lZef2IeCUilqXpPwKPU1zZEIqLwS9I03cAp9TvU9J4SQ+lXtJqSe9O7ddK6ky9o6+U1l8v6X+k9TslHStpsaSnJX2m9F4fSj2spyRdJ2m3vwVJn0g/vxWSrpc0LD1uTLWskvQ3Vf6hhrSI8KMFH8DLwDso/jiHAyuAqcC9aflXgU+k6ZHAL4ADgQOA4al9MtCZpqcC2ykCYC/gYeCkLva7EviLNH0ZcGWavhS4oIeaRwLPAIen+dXAhNLyp4Exddv8LXBxmh4GjEjTo0ttDwDvSPPrgc+m6W+kekcAY4HNpff6e+DwtP0S4PTS9mOAtwL3APuk9m8CM4E/B5aU31OzfxcG+6MlroxnXYuIlWkc4yyKXk3ZNOAvJV2Q5ocDE4FfAddIOhp4FXhzaZvHImIjgKQVwCTg32oLJR1M8Uf1YGpaANxepVZJe1P0tK6KdGubipYD8yXtA/xLRKxI7WekO1TsDYwH3kYRKLDz0qyrgIMi4jfAbyT9QdLI0nut3WLnFuAkisCuOYUiUJanztX+wBaK4Dlc0tXAfcAPevFehiSHTOtbCFxB8b/z60vtAv4qIna5NYykS4HNwFEUPZbflxb/oTT9Ko39/ZgHrI2IK0tttQvEb0whdDDwQnmjiHhI0nsoDgtvlPR14MfABcBxEfGSpBspQrT+fbzGru/pNXa+p/pLQtbPC1gQERfVvxFJRwHvBz4DnAH89R7es+ExmXYwH/hKRKyqa18MfKE2xiHpmNR+MPBcRLwGfJLicKGSiNgOvFQbF0nbP9jNJqR9/33a7/l1ixYCs9L06cCPIh2DlLZ9I8VhzreAG4BjgddRDHxvlzQOOJXem5IuTL8XcCalHluyFDhd0htSHaMlvTGdedorIr4PfDnVY91wT6bFpcObq7pYdDlwJbAy/SH9EvggxdjC9yXNBBZR/LH2xizgOkkHUIyvnNPdypImABcDa4DHU+ZdExE3AN8GviNpHfAixV0o6k0FLpT0J4pxqJkR8UtJT6TXfBb4SS/fAxSHYdcARwDLgLvKCyPi55K+DPwg/fz+BJwH/A74p9JA8W49HduVLyRuQ46kqRSD1B9scilDgg+XzCwr92TMLCv3ZMwsK4eMmWXVliEzffr0oPjcgx9++NH/R7+0Zchs27at2SWYWdKWIWNmg4dDxsyycsiYWVYOGTPLyiFjZlk5ZMwsK4eMmWXlkDGzrBwyZpaVQ8bMsnLImFlWDhkzy8ohY2ZZOWTMLCuHjJll5ZAxs6wcMmaWlUPGzLJyyJhZVg4ZM8vKIWNmWTlkzCwrh4yZZeWQMbOsHDJmlpVDxsyycsiYWVbZQkbSfElbJK0utY2WtETS2vQ8KrVL0lWS1klaKenY0jaz0vprJc3KVa+Z5ZGzJ3MjML2ubQ6wNCImA0vTPMCpwOT0mA1cC0UoAZcAxwNTgEtqwWRmrSFbyETEQ8CLdc0zgAVpegHw4VL7TVF4BBgpaTzwfmBJRLwYES8BS9g9uMxsEBvoMZlxEfFcmn4eGJemDwGeLa23MbXtqX03kmZL6pTUuXXr1sZWbWZ91rSB34gIIBr4evMioiMiOsaOHduolzWzfhrokNmcDoNIz1tS+ybg0NJ6E1LbntrNrEUMdMgsBGpniGYBd5faZ6azTCcA29Nh1WJgmqRRacB3Wmozsxaxd64XlnQLMBUYI2kjxVmiucBtks4FNgBnpNXvB04D1gGvAOcARMSLki4Hlqf1LouI+sFkMxvEVAyNtJeOjo7o7Oxsdhlm7UL92dif+DWzrBwyZpaVQ8bMsqoUMpLeVaXNzKxe1Z7M1RXbzMx20e0pbEnvBE4Exkr6YmnR64BhOQszs/bQ0+dk9gUOSuuNKLX/Gjg9V1Fm1j66DZmIeBB4UNKNEbFhgGoyszZS9RO/+0maB0wqbxMR781RlJm1j6ohcztwHXAD8Gq+csys3VQNmR0RcW3WSsysLVU9hX2PpM9JGp+u0zs6XRrTzKxbVXsytcszXFhqC+DwxpZjZu2mUshExGG5CzGz9lQpZCTN7Ko9Im5qbDlm1m6qHi4dV5oeDpwCPA44ZMysW1UPl75Qnpc0Erg1R0Fm1l76eqmH3wIepzGzHlUdk7mHnbcvGQa8FbgtV1Fm1j6qjslcUZreAWyIiI0Z6jGzNlPpcCl9UXINxTexRwF/zFmUmbWPqlfGOwN4DPgYxW1MHpXkSz2YWY+qHi5dDBwXEVsAJI0FfgjckaswM2sPVc8u7VULmOSFXmxrZkNY1Z7MIkmLgVvS/JkUd300M+tWT9f4PQIYFxEXSvoocFJa9DBwc+7izKz19dSTuRK4CCAi7gTuBJD09rTsQxlrM7M20NO4yriIWFXfmNomZanIzNpKTyEzsptl+/d1p5LWS1olaYWkztQ2WtISSWvT86jULklXSVonaaWkY/u6XzMbeD2FTKekT9c3SvoU8NN+7vvkiDg6IjrS/BxgaURMBpameYBTgcnpMRvwZUDNWkhPYzLnA3dJOpudodJBcT+mjzS4lhnA1DS9AHgA+FJqvykiAnhE0khJ4yPiuQbv38wy6Om+S5uBEyWdDByZmu+LiB/1c78B/EBSANdHxDyK8Z9acDwPjEvThwDPlrbdmNp2CRlJsyl6OkycOLGf5ZlZo1S9nswyYFkD93tSRGyS9AZgiaQ1dfuLFECVpaCaB9DR0dGrbc0sn6Z8ajciNqXnLcBdwBRgs6TxAOm59gnjTcChpc0npDYzawEDHjKSDpQ0ojYNTANWAwvZeVeEWcDdaXohMDOdZToB2O7xGLPWUfVrBY00jmIwubb/70bEIknLgdsknQtsoPi2NxRfXzgNWAe8Apwz8CWbWV8NeMhExDPAUV20v0BxgfL69gDOG4DSzCwDf5PazLJyyJhZVg4ZM8vKIWNmWTlkzCwrh4yZZeWQMbOsHDJmlpVDxsyycsiYWVYOGTPLqhlfkLRBYNKc+3aZXz/3A02qxNqdezJmlpV7Mgbs3rMB926sMdyTMbOsHDJmlpVDxsyy8pjMENDVeIvZQHFPxsyycsiYWVYOGTPLyiFjZll54Nf2yB/Qs0ZwT8bMsnLImFlWDhkzy8pjMm3GH7yzwcYhY73iwWDrrZY5XJI0XdJTktZJmtPsesysmpYIGUnDgH8ETgXeBpwl6W3NrcrMqmiVw6UpwLqIeAZA0q3ADODnTa2qyQbL+IsPoaw7rRIyhwDPluY3AseXV5A0G5idZl+W9FSF1x0DbGtIhc0xaOvX1yqtNmjrr2io1L8oIqb3dSetEjI9ioh5wLzebCOpMyI6MpWUnetvLtdfTUuMyQCbgENL8xNSm5kNcq0SMsuByZIOk7Qv8HFgYZNrMrMKWuJwKSJ2SPo8sBgYBsyPiCcb8NK9OrwahFx/c7n+ChQRA7EfMxuiWuVwycxalEPGzLJyyJhZVg4ZM8vKIWNmWTlkzCwrh4yZZeWQMbOsHDJmlpVDxsyycsiYWVYOGTPLyiHToiSFpH8uze8taauke5tUz1skrZD0hKQ31S17IF0EfkV6vCG17yfpe+ni8I9KmtSM2sskrZc0ptl1tBOHTOv6LXCkpP3T/Pto7oW8PgzcERHHRMTTXSw/OyKOTo8tqe1c4KWIOAL4BlDtop3WUhwyre1+oHbF7rOAW2oLJB0oab6kx1LvYkZqnyTpx5IeT48TU/vU1OO4Q9IaSTdLUv0OJR0t6RFJKyXdJWmUpNOA84HPSlrWi/pnAAvS9B3AKfX7lDRe0kOpB7Ra0rtT+7WSOiU9KekrpfXXS/ofaf1OScdKWizpaUmfKb3XhyTdl3pY10na7W9B0ifSz2+FpOslDUuPG1MtqyT9TS/e79AUEX604AN4GXgHxR/ncGAFMBW4Ny3/KvCJND0S+AVwIHAAMDy1TwY60/RUYDvFpU33Ah4GTupivyuBv0jTlwFXpulLgQv2UOsDwKpU49+x8zpGq4EJpfWeBsbUbfu3wMVpehgwIk2PLrU9ALwjza8HPpumv5HqHQGMBTaX3uvvgcPT9kuA00vbjwHeCtwD7JPavwnMBP4cWFKqb2SzfxcG+8M9mRYWESuBSRS9mPvrFk8D5khaQfFHOByYCOwDfEvSKuB2ivtY1TwWERsj4jWKQJhUfkFJB1P8UT2YmhYA76lQ6tkR8Xbg3enxyUpvsLAcOEfSpcDbI+I3qf0MSY8DTwB/Vvc+apdmXQU8GhG/iYitwB8kjUzLHouIZyLiVYoe4El1+z2FIlCWp5/hKRSh9AxwuKSrJU0Hft2L9zIktcTlN61bC4ErKP53fn2pXcBfRcQut4ZJf6ybgaMoeiy/Ly3+Q2n6VRr0+xERm9LzbyR9l+I+Wjex8wLxGyXtDRwMvFC37UOS3kNxWHijpK8DPwYuAI6LiJck3UgRovXv47W69/Ra6T3VXxKyfl7Agoi4qP79SDoKeD/wGeAM4K+7/QEMce7JtL75wFciYlVd+2LgC7UxDknHpPaDgedSb+WTFIcLlUTEduCl2rhI2v7BbjapnfUak6b3AT5IcZgERUDOStOnAz+KdAxS2v6NFIc53wJuAI4FXkcx8L1d0jiKO4v21pR0Yfq9gDOBf6tbvhQ4vXQmbLSkN6b3sldEfB/4cqrHuuGeTIuLiI3AVV0suhy4EliZ/pB+SfEH/k3g+5JmAoso/lh7YxZwnaQDKA4dzulh/f2AxSlghgE/BL6Vln0b+I6kdcCLFHehqDcVuFDSnyjGoWZGxC8lPQGsobjp3096+R6gOAy7BjgCWAbcVV4YET+X9GXgB+nn9yfgPOB3wD+VBop36+nYrnwhcRtyJE2lGKT+YJNLGRJ8uGRmWbknY2ZZuSdjZlk5ZMwsq7YMmenTpwfF5x788MOP/j/6pS1DZtu2bc0uwcyStgwZMxs8HDJmlpVDxsyycsiYWVYOGTPLyiFjZlk5ZMwsK4eMmWXlkDGzrBwyZpaVQ8bMsnLImFlWDhkzy8ohY2ZZOWTMLCuHjJll5ZAxs6wcMmaWlUPGzLJyyJhZVg4ZM8vKIWNmWTlkzCwrh4yZZeWQMbOsHDJmlpVDxsyyyhYykuZL2iJpdalttKQlktam51GpXZKukrRO0kpJx5a2mZXWXytpVq56zSyPnD2ZG4HpdW1zgKURMRlYmuYBTgUmp8ds4FooQgm4BDgemAJcUgsmM2sN2UImIh4CXqxrngEsSNMLgA+X2m+KwiPASEnjgfcDSyLixYh4CVjC7sFlZoPYQI/JjIuI59L088C4NH0I8GxpvY2pbU/tu5E0W1KnpM6tW7c2tmoz67OmDfxGRADRwNebFxEdEdExduzYRr2smfXTQIfM5nQYRHrekto3AYeW1puQ2vbUbmYtYqBDZiFQO0M0C7i71D4znWU6AdieDqsWA9MkjUoDvtNSm5m1iL1zvbCkW4CpwBhJGynOEs0FbpN0LrABOCOtfj9wGrAOeAU4ByAiXpR0ObA8rXdZRNQPJpvZIKZiaKS9dHR0RGdnZ7PLMGsX6s/G/sSvmWXlkDGzrCqFjKR3VWkzM6tXtSdzdcU2M7NddHt2SdI7gROBsZK+WFr0OmBYzsLMrD30dAp7X+CgtN6IUvuvgdNzFWVm7aPbkImIB4EHJd0YERsGqCYzayNVP4y3n6R5wKTyNhHx3hxFmVn7qBoytwPXATcAr+Yrx8zaTdWQ2RER12atxMzaUtVT2PdI+pyk8ekSmqPTVevMzLpVtSdT++b0haW2AA5vbDlm1m4qhUxEHJa7EDNrT5VCRtLMrtoj4qbGlmNm7abq4dJxpenhwCnA44BDxsy6VfVw6QvleUkjgVtzFGRm7aWvl3r4LeBxGjPrUdUxmXvYeWeBYcBbgdtyFWVm7aPqmMwVpekdwIaI2JihHjNrM5UOl9IXJddQfBN7FPDHnEWZWfuoemW8M4DHgI9R3GHgUUm+1IOZ9ajq4dLFwHERsQVA0ljgh8AduQozs/ZQ9ezSXrWASV7oxbZmNoRV7ckskrQYuCXNn0lxQzYzs271dI3fI4BxEXGhpI8CJ6VFDwM35y7OzFpfTz2ZK4GLACLiTuBOAElvT8s+lLE2M2sDPY2rjIuIVfWNqW1SlorMrK30FDIju1m2fwPrMLM21VPIdEr6dH2jpE8BP+3rTiWtl7RK0gpJnalttKQlktam51GpXZKukrRO0kpJx/Z1v2Y28HoakzkfuEvS2ewMlQ6K+zF9pJ/7PjkitpXm5wBLI2KupDlp/kvAqcDk9DgeuDY9m1kL6Om+S5uBEyWdDByZmu+LiB9lqGUGMDVNLwAeoAiZGcBNERHAI5JGShofEc9lqMHMGqzq9WSWAcsauN8AfiApgOsjYh7FIHMtOJ4HxqXpQ4BnS9tuTG27hIyk2cBsgIkTJzawVDPrj6ofxmu0kyJik6Q3AEskrSkvjIhIAVRZCqp5AB0dHb3a1szyacpXAyJiU3reAtwFTAE2SxoPkJ5rX2PYBBxa2nxCajOzFjDgISPpQEkjatPANGA1sJCdt16ZBdydphcCM9NZphOA7R6PMWsdzThcGkdxxqq2/+9GxCJJy4HbJJ0LbKC4pAQU35E6DVgHvAKcM/Alm1lfDXjIRMQzwFFdtL9AcReE+vYAzhuA0swsA1+uwcyycsiYWVbNOoVtTTZpzn27zK+f+4EmVWLtzj0ZM8vKIWNmWTlkzCwrh4yZZeWQMbOsHDJmlpVPYRuw+ylt8Gltawz3ZMwsK4eMmWXlkDGzrBwyZpaVQ8bMsnLImFlWDhkzy8ohY2ZZ+cN4Q0BXH7QzGyjuyZhZVg4ZM8vKIWNmWTlkzCwrh4yZZeWQMbOsfArb9sjXmLFGcE/GzLJyyJhZVi0TMpKmS3pK0jpJc5pdj5lV0xJjMpKGAf8IvA/YCCyXtDAift7cygYff4XABpuWCBlgCrAuIp4BkHQrMANwyAwwDwZbb7VKyBwCPFua3wgcX15B0mxgdpp9WdJTFV53DLCtIRU2x6CoX1/r86aDov5+GCr1L4qI6X3dSauETI8iYh4wrzfbSOqMiI5MJWXn+pvL9VfTKgO/m4BDS/MTUpuZDXKtEjLLgcmSDpO0L/BxYGGTazKzClricCkidkj6PLAYGAbMj4gnG/DSvTq8GoRcf3O5/goUEQOxHzMbolrlcMnMWpRDxsyycsiYWVYOGTPLyiFjZlk5ZMwsK4eMmWXlkDGzrBwyZpaVQ8bMsnLImFlWDhkzy8oh0ySSQtI/l+b3lrRV0r1NquctklZIekLSm0rtB0i6T9IaSU9Kmltatp+k76WLuz8qaVKF/ayXtCrtq7PUPlrSEklr0/Oo1C5JV6V9rJR0bGmbWWn9tZJmNeyH0UeSLpV0QbPrGGwcMs3zW+BISfun+ffR3AtxfRi4IyKOiYin65ZdERFvAY4B3iXp1NR+LvBSRBwBfAOoeiHOkyPi6Lqrss0BlkbEZGBpmgc4FZicHrOBa6EIJeASisuwTgEuqQWTDS4Omea6H6hdhfss4JbaAkkHSpov6bHUu5iR2idJ+rGkx9PjxNQ+VdIDku5IvY6bJal+h5KOlvRI6hXcJWmUpNOA84HPSlpWXj8iXomIZWn6j8DjFFcmhOJi7gvS9B3AKV3ts6Lyay2gCL1a+01ReAQYKWk88H5gSUS8GBEvAUuA3a5DK2mupJ+n93tFavtQ6nk9IemHksal9kslLUg/3w2SPirpf6ae1yJJ+6T11pfaH5N0RBf7fVPa5qfp9d6S2j8mabWkn0l6qI8/q9YSEX404QG8DLyD4o9zOLACmArcm5Z/FfhEmh4J/AI4EDgAGJ7aJwOdaXoqsJ0iAPYCHgZO6mK/K4G/SNOXAVem6UuBC3qoeSTwDHB4ml8NTCgtfxoY08Nr/JIiqH4KzC61/3tpWrV54N7y+6Do5XQAFwBfLrX/XX39wOuBp9h53aSR6XlUqe1TwP8q/Qz+DdgHOAp4BTg1LbsL+HCaXg9cnKZnlv7N/uNnmOqcnKaPB36UplcBh5TrafdHS1wZr11FxMo0jnEWRa+mbBrwl6Vj/OHAROBXwDWSjgZeBd5c2uaxiNgIIGkFMInij4bUdjDFL/aDqWkBcHuVWiXtTdHTuirSrWn66KSI2CTpDcASSWsiYpf/0SMiJDXiamrbgd8D305jXbXxrgnA91KPaF+K4Kv514j4k6RVFFdhXJTaV1H8PGtuKT1/o7xTSQcBJwK3lzp2+6XnnwA3SroNuLNf765F+HCp+RYCV1A6VEoE/FUUYxdHR8TEiPi/wN8Amyn+p+2g+COp+UNp+lUae3nVecDaiLiy1PYfF3hPIXQw8EJ3LxIRm9LzForewZS0aHP6oyc9b6nfR1K7iHyPF5ePiB3p9e8APsjOwLgauCYi3g78N4oAr/lD2vY14E+RuhzAa+z684w9TEPxd/XvpX+7oyPirel1PwN8OdX+U0mvp805ZJpvPvCViFhV174Y+EJtjEPSMan9YOC59EfwSYr/bSuJiO3AS5LenZo+CTzYzSakff992u/5dYsWArWzOqdTHBKEpEMkLe3idQ6UNKI2TdFbW93Fa80C7i61z0xnmU4AtkfEcxQ/n2lpTGlUeq3Fdfs7CDg4Iu6nCOej0qKD2RlIfT0rdWbp+eHygoj4NfBLSR9LdUjSUWn6TRHxaET8v8BWdg3KtuTDpSZLhzdXdbHocuBKYKWkvSi69B8Evgl8X9JMiv+Zf9vLXc4CrpN0AMX4yjndrSxpAnAxsAZ4PGXeNRFxA/Bt4DuS1gEvUtxFAmA8sKOLlxsH3JVeY2/guxFR613MBW6TdC6wATgjtd8PnAasoxgjOQcgIl6UdDnFnSwALouIF+v2NwK4W9Jwip7hF1P7pRSHMi8BPwIO6+5nsAejJK2k6Pmc1cXys4FrJX2ZYoznVuBnwD9ImpzqWZra2povJG4Np+LOEv9fRLTlbWskrQc6IqKV7x45YNyTsYaLiGuaXYMNHu7JmFlWHvg1s6wcMmaWVVuGzPTp04Piswt++OFH/x/90pYhs22bB/3NBou2DBkzGzwcMmaWlUPGzLLyh/GGqElz7ttlfv3cD+xhTbP+cU/GzLJyyJhZVg4ZM8vKIWNmWTlkzCwrh4yZZeWQMbOsHDJmlpVDxsyycsiYWVYOGTPLyiFjZlk5ZMwsK4eMmWXlkDGzrBwyZpaVQ8bMsnLImFlWDhkzy8ohY2ZZOWTMLCuHjJll5VuiGLD7LVLAt0mxxsjWk5E0X9IWSatLbaMlLZG0Nj2PSu2SdJWkdZJWSjq2tM2stP5aSbNy1WtmeeQ8XLoRmF7XNgdYGhGTgaVpHuBUYHJ6zAauhSKUgEuA44EpwCW1YDKz1pDtcCkiHpI0qa55BjA1TS8AHgC+lNpviogAHpE0UtL4tO6SiHgRQNISiuC6JVfd7airQyGzgTLQA7/jIuK5NP08MC5NHwI8W1pvY2rbU/tuJM2W1Cmpc+vWrY2t2sz6rGlnl1KvJRr4evMioiMiOsaOHduolzWzfhrokNmcDoNIz1tS+ybg0NJ6E1LbntrNrEUMdMgsBGpniGYBd5faZ6azTCcA29Nh1WJgmqRRacB3WmozsxaRbeBX0i0UA7djJG2kOEs0F7hN0rnABuCMtPr9wGnAOuAV4ByAiHhR0uXA8rTeZbVBYDNrDTnPLp21h0WndLFuAOft4XXmA/MbWJqZDSB/rcDMsnLImFlWlUJG0ruqtJmZ1avak7m6YpuZ2S66HfiV9E7gRGCspC+WFr0OGJazMDNrDz2dXdoXOCitN6LU/mvg9FxFmVn76DZkIuJB4EFJN0bEhgGqyczaSNXPyewnaR4wqbxNRLw3R1Fm1j6qhsztwHXADcCr+coxs3ZTNWR2RMS1WSsxs7ZU9RT2PZI+J2l8uoTm6HTVOjOzblXtydS+OX1hqS2Awxtbjpm1m0ohExGH5S7EzNpTpZCRNLOr9oi4qbHlmFm7qXq4dFxpejjF5RoeBxwyZtatqodLXyjPSxoJ3JqjIDNrL3291MNvAY/TmFmPqo7J3MPOOwsMA94K3JarKDNrH1XHZK4oTe8ANkTExgz1mFmbqXS4lL4ouYbim9ijgD/mLMrM2kfVw6UzgH+guK2sgKslXRgRd2SszZqsq9vbrp/7gSZUYq2s6uHSxcBxEbEFQNJY4IeAQ8bMulX17NJetYBJXujFtmY2hFXtySyStBi4Jc2fSXFDNjOzbvV0jd8jgHERcaGkjwInpUUPAzfnLs7MWl9PPZkrgYsAIuJO4E4ASW9Pyz6UsTYzawM9jauMi4hV9Y2pbVKWisysrfQUMiO7WbZ/A+swszbVU8h0Svp0faOkTwE/7etOJa2XtErSCkmdqW20pCWS1qbnUaldkq6StE7SSknH9nW/ZjbwehqTOR+4S9LZ7AyVDor7MX2kn/s+OSK2lebnAEsjYq6kOWn+S8CpwOT0OB64Nj2bWQvo6b5Lm4ETJZ0MHJma74uIH2WoZQYwNU0voPh08ZdS+00REcAjkkZKGh8Rz2WowcwarOr1ZJYByxq43wB+ICmA6yNiHsUgcy04ngfGpelDgGdL225MbbuEjKTZwGyAiRMnNrBUM+uPqh/Ga7STImKTpDcASyStKS+MiEgBVFkKqnkAHR0dvdrWzPJpylcDImJTet4C3AVMATZLGg+QnmtfY9gEHFrafEJqM7MWMOAhI+lASSNq08A0YDWwkJ23XpkF3J2mFwIz01mmE4DtHo8xax3NOFwaR3HGqrb/70bEIknLgdsknQtsAM5I698PnAasA14Bzhn4kltHV5dnMGumAQ+ZiHgGOKqL9hco7oJQ3x7AeQNQmpll4Ms1mFlWDhkzy8ohY2ZZOWTMLCuHjJll5ZAxs6wcMmaWlUPGzLJyyJhZVg4ZM8vKIWNmWTlkzCwrh4yZZdWsK+NZi+rqUhLr536gCZVYq3BPxsyycsiYWVYOGTPLyiFjZlk5ZMwsK4eMmWXlkDGzrBwyZpaVP4zXwnyPJWsF7smYWVYOGTPLyodL1m/+PpN1xz0ZM8vKIWNmWbVMyEiaLukpSeskzWl2PWZWTUuEjKRhwD8CpwJvA86S9LbmVmVmVbTKwO8UYF1EPAMg6VZgBvDzplY1gFrtMzH19XogeOhqlZA5BHi2NL8ROL68gqTZwOw0+7Kkpyq87hhgW0MqbI6WqV9f67K5Zerfg6FS/6KImN7XnbRKyPQoIuYB83qzjaTOiOjIVFJ2rr+5XH81LTEmA2wCDi3NT0htZjbItUrILAcmSzpM0r7Ax4GFTa7JzCpoicOliNgh6fPAYmAYMD8inmzAS/fq8GoQcv3N5forUEQMxH7MbIhqlcMlM2tRDhkzy2pIhsxg+4qCpPWSVklaIakztY2WtETS2vQ8KrVL0lWp9pWSji29zqy0/lpJs0rtf55ef13aVg2oeb6kLZJWl9qy17ynfTSo/kslbUr/DisknVZadlGq5SlJ7y+1d/m7lE5SPJrav5dOWCBpvzS/Li2f1IfaD5W0TNLPJT0p6b9397Np+s8/IobUg2Lg+GngcGBf4GfA25pc03pgTF3b/wTmpOk5wNfS9GnAvwICTgAeTe2jgWfS86g0PSoteyytq7TtqQ2o+T3AscDqgax5T/toUP2XAhd0se7b0u/JfsBh6fdnWHe/S8BtwMfT9HXAZ9P054Dr0vTHge/1ofbxwLFpegTwi1TjoPz5N/2PfqAfwDuBxaX5i4CLmlzTenYPmaeA8aVfqqfS9PXAWfXrAWcB15far09t44E1pfZd1utn3ZPq/kiz17ynfTSo/kvpOmR2+R2hOMv5zj39LqU/zG3A3vW/c7Vt0/TeaT3189/hbuB9g/XnPxQPl7r6isIhTaqlJoAfSPqpiq9HAIyLiOfS9PPAuDS9p/q7a9/YRXsOA1HznvbRKJ9PhxTzS4cCva3/9cC/R8SOLur/j23S8u1p/T5Jh1vHAI8ySH/+QzFkBqOTIuJYim+ZnyfpPeWFUfy30VKfNRiImjPs41rgTcDRwHPA/2rgazecpIOA7wPnR8Svy8sG089/KIbMoPuKQkRsSs9bgLsovnW+WdJ4gPS8Ja2+p/q7a5/QRXsOA1HznvbRbxGxOSJejYjXgG9R/Dv0pf4XgJGS9q5r3+W10vKD0/q9ImkfioC5OSLuTM2D8uc/FENmUH1FQdKBkkbUpoFpwOpUU220fxbFcTepfWY6Y3ACsD11XxcD0ySNSt38aRTjAM8Bv5Z0QjpDMLP0Wo02EDXvaR/9VvvjST5C8e9Q2+fH05mhw4DJFAOjXf4upf/hlwGn7+FnUav/dOBHaf3e1Cng28D/jYivlxYNzp9/IwYAW+1BMdr+C4ozAxc3uZbDKc5K/Ax4slYPxXH6UmAt8ENgdGoXxQW8ngZWAR2l1/prYF16nFNq76D4g3kauIZ+DjSm17yF4pDiTxTH7OcORM172keD6v9Oqm9l+mMaX1r/4lTLU5TOzu3pdyn9uz6W3tftwH6pfXiaX5eWH96H2k+iOExZCaxIj9MG68/fXysws6yG4uGSmQ0gh4yZZeWQMbOsHDJmlpVDxsyycshYn0h6udk1WGtwyJhZVg4Z6xdJUyU9IOkOSWsk3Vy69shxkv6PpJ9JekzSCEnDJf1TulbJE5JOTuv+V0n/kq5Rsl7S5yV9Ma3ziKTRab03SVqUvkz6Y0lvaeb7t561xIXEbdA7Bvgz4FfAT4B3SXoM+B5wZkQsl/Q64HfAf6f4bt3bU0D8QNKb0+scmV5rOMUnUL8UEcdI+gbFR9uvpLj49WciYq2k44FvAu8dqDdqveeQsUZ4LCI2AkhaQXGdlu3AcxGxHCDSt4QlnQRcndrWSNoA1EJmWUT8BviNpO3APal9FfCO9K3jE4HbtfPifvvlfWvWXw4Za4Q/lKZfpe+/V+XXea00/1p6zb0ortNydB9f35rAYzKWy1PAeEnHAaTxmL2BHwNnp7Y3AxPTuj1KvaFfSvpY2l6SjspRvDWOQ8ayiIg/AmcCV0v6GbCEYqzlm8BeklZRjNn814j4w55faTdnA+em13wSmNHYyq3R/C1sM8vKPRkzy8ohY2ZZOWTMLCuHjJll5ZAxs6wcMmaWlUPGzLL6/wFz7biNGFuztQAAAABJRU5ErkJggg==\n",
Eva Zangerle's avatar
Eva Zangerle committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
      "text/plain": [
       "<Figure size 288x720 with 5 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# plot resulting statistic distributions\n",
    "g = sns.FacetGrid(results, col=\"type\", col_wrap=1, height=2, aspect=2)\n",
    "g.map(plt.hist, \"income\", range=[0, 200000], bins=40)\n",
    "g.set_axis_labels(\"Income\", \"Count\")\n",
    "g.set_titles(\"{col_name}\")\n",
    "\n",
    "plt.tight_layout();"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "71fe77d1-9230-4323-981f-be6a03607f13",
   "metadata": {},
   "source": [
    "## Bootstrap"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6974ded2-d837-4cee-96df-9f772c73d905",
   "metadata": {},
   "source": [
    "A bootstrap can be computed using scikit-learn's resample method (sampling with replacement)."
   ]
  },
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
353
   "execution_count": 10,
Eva Zangerle's avatar
Eva Zangerle committed
354
355
356
357
358
   "id": "48249d77-0dfc-4130-9406-258941dab262",
   "metadata": {},
   "outputs": [],
   "source": [
    "def bootstrap(data, function, no_draws):\n",
Eva Zangerle's avatar
Eva Zangerle committed
359
360
361
362
    "    \"\"\"\n",
    "    function draw no_draws samples of data, applies func and\n",
    "    stores result in array\n",
    "    \"\"\"\n",
Eva Zangerle's avatar
Eva Zangerle committed
363
364
365
366
367
368
369
370
371
372
373
    "    results = []\n",
    "    for nrepeat in range(no_draws):\n",
    "        sample = resample(data, replace=True)\n",
    "        results.append(function(sample))\n",
    "\n",
    "    # convert to pandas Series for easier statistic computation\n",
    "    return pd.Series(results)"
   ]
  },
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
374
   "execution_count": 11,
Eva Zangerle's avatar
Eva Zangerle committed
375
376
377
378
379
380
381
382
383
   "id": "1f28124d-5d2f-489a-bbb3-092dfba89aa6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<AxesSubplot:ylabel='Frequency'>"
      ]
     },
Eva Zangerle's avatar
Eva Zangerle committed
384
     "execution_count": 11,
Eva Zangerle's avatar
Eva Zangerle committed
385
386
387
388
389
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
Eva Zangerle's avatar
Eva Zangerle committed
390
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD4CAYAAAAD6PrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAATU0lEQVR4nO3df7RdZX3n8fcHoiAWCEjM0ASaOKYqMxWESOnSji0slR9toSNabC1ZlGk6Sru0dnWM1hm71sysBW2nKGPLNCOdBjstIorEQqsRUVe7BjQRyg/RkmKQBJCI/LBoZaV+54/z3M0h3CTnJtnn3Ny8X2uddZ797H3O+T7ZN/dz98+TqkKSJIADJl2AJGn2MBQkSR1DQZLUMRQkSR1DQZLUmTfpAvbEUUcdVUuWLJl0GZK0T9mwYcO3qmrBdPP26VBYsmQJ69evn3QZkrRPSXLfjua5+0iS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1Nmnr2iWZqslq66f2GdvuvisiX229n1uKUiSOoaCJKljKEiSOoaCJKljKEiSOr2GQpJNSe5IcluS9a3vyCTrktzTno9o/UlyWZKNSW5PcmKftUmSnm0cWwo/XVUnVNXyNr0KuLGqlgE3tmmAM4Bl7bESuHwMtUmShkxi99HZwJrWXgOcM9R/ZQ3cDMxPcvQE6pOk/VbfoVDAp5NsSLKy9S2sqgdb+yFgYWsvAu4feu3m1vcMSVYmWZ9k/datW/uqW5L2S31f0fzqqtqS5IXAuiRfHZ5ZVZWkZvKGVbUaWA2wfPnyGb1WkrRzvW4pVNWW9vwwcC1wMvDNqd1C7fnhtvgW4Jihly9ufZKkMektFJI8P8mhU23gdcCdwFpgRVtsBXBda68Fzm9nIZ0CPD60m0mSNAZ97j5aCFybZOpz/qKq/ibJl4Crk1wI3Ae8qS1/A3AmsBH4LnBBj7VJkqbRWyhU1b3A8dP0PwKcNk1/ARf1VY8kade8olmS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEmdvm+IJ03UklXXT7oEaZ/iloIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6vYdCkgOT3Jrkr9r00iS3JNmY5CNJntv6D2rTG9v8JX3XJkl6pnFsKbwduHto+hLg0qp6MfAocGHrvxB4tPVf2paTJI1Rr6GQZDFwFvChNh3gVOCatsga4JzWPrtN0+af1paXJI1J31sK7wf+E/CDNv0C4LGq2tamNwOLWnsRcD9Am/94W/4ZkqxMsj7J+q1bt/ZYuiTtf3oLhSQ/AzxcVRv25vtW1eqqWl5VyxcsWLA331qS9nvzenzvVwE/l+RM4GDgMOADwPwk89rWwGJgS1t+C3AMsDnJPOBw4JEe65Mkbae3LYWqendVLa6qJcB5wGer6peAm4Bz22IrgOtae22bps3/bFVVX/VJkp5tEtcpvAt4Z5KNDI4ZXNH6rwBe0PrfCayaQG2StF/rc/dRp6o+B3yute8FTp5mmX8G3jiOeiRJ0/OKZklSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHVGCoUkP9Z3IZKkyRt1S+GPk3wxyduSHN5rRZKkiRkpFKrqJ4FfAo4BNiT5iySv7bUySdLYjXxMoaruAd4LvAt4DXBZkq8m+fd9FSdJGq9Rjym8PMmlwN3AqcDPVtXLWvvSHuuTJI3RvBGX+5/Ah4D3VNX3pjqr6oEk7+2lMknS2I0aCmcB36uqfwFIcgBwcFV9t6o+3Ft1kmZsyarrJ/K5my4+ayKfq71r1GMKnwGeNzR9SOuTJM0ho4bCwVX1T1MTrX1IPyVJkiZl1FB4MsmJUxNJTgK+t5PlJUn7oFGPKbwD+GiSB4AA/wr4hZ29IMnBwBeAg9rnXFNV70uyFLgKeAGwAfjlqnoqyUHAlcBJwCPAL1TVphmPSJK020a9eO1LwEuBtwL/EXhZVW3Yxcu+D5xaVccDJwCnJzkFuAS4tKpeDDwKXNiWvxB4tPVf2paTJI3RTG6I90rg5cCJwJuTnL+zhWtg6jjEc9qjGFzbcE3rXwOc09pnt2na/NOSZAb1SZL20Ei7j5J8GPjXwG3Av7TuYrC7Z2evO5DBLqIXA38E/CPwWFVta4tsBha19iLgfoCq2pbkcQa7mL613XuuBFYCHHvssaOUr1lgUqdJSpqZUY8pLAeOq6qayZu36xpOSDIfuJbBLqg9UlWrgdUAy5cvn1E9kqSdG3X30Z0MDi7vlqp6DLgJ+AlgfpKpMFoMbGntLQxuuEebfziDA86SpDEZNRSOAr6S5FNJ1k49dvaCJAvaFgJJnge8lsG9k24Czm2LrQCua+21bZo2/7Mz3TKRJO2ZUXcf/e5uvPfRwJp2XOEA4Oqq+qskXwGuSvLfgFuBK9ryVwAfTrIR+DZw3m58piRpD4wUClX1+SQ/Aiyrqs8kOQQ4cBevuR14xTT99wInT9P/z8AbR6paktSLUW+d/asMThP9k9a1CPhETzVJkiZk1GMKFwGvAp6A7gt3XthXUZKkyRg1FL5fVU9NTbSzgzwILElzzKih8Pkk7wGe176b+aPAJ/srS5I0CaOGwipgK3AH8GvADQy+r1mSNIeMevbRD4D/3R6SpDlq1HsffZ1pjiFU1Yv2ekWSpImZyb2PphzM4HqCI/d+OZKkSRr1+xQeGXpsqar3A35LtyTNMaPuPjpxaPIABlsOo25lSJL2EaP+Yv8fQ+1twCbgTXu9GknSRI169tFP912IJGnyRt199M6dza+qP9w75UiSJmkmZx+9ksF3HgD8LPBF4J4+ipIkTcaoobAYOLGqvgOQ5HeB66vqLX0VJkkav1Fvc7EQeGpo+qnWJ0maQ0bdUrgS+GKSa9v0OcCaXiqSJE3MqGcf/fckfw38ZOu6oKpu7a8sSdIkjLr7COAQ4Imq+gCwOcnSnmqSJE3IqF/H+T7gXcC7W9dzgD/vqyhJ0mSMuqXw88DPAU8CVNUDwKF9FSVJmoxRQ+Gpqira7bOTPL+/kiRJkzJqKFyd5E+A+Ul+FfgMfuGOJM05uzz7KEmAjwAvBZ4AXgL8l6pa13NtkqQx22UoVFUluaGqfgwwCCRpDht199GXk7yy10okSRM36hXNPw68JckmBmcghcFGxMv7KkySNH47DYUkx1bVN4DXj6keSdIE7WpL4RMM7o56X5KPVdUbxlCTJGlCdnVMIUPtF/VZiCRp8nYVCrWDtiRpDtpVKByf5Ikk3wFe3tpPJPlOkid29sIkxyS5KclXktyV5O2t/8gk65Lc056PaP1JclmSjUluT3Li3hmiJGlUOw2Fqjqwqg6rqkOral5rT00ftov33gb8VlUdB5wCXJTkOGAVcGNVLQNubNMAZwDL2mMlcPkejEuStBtmcuvsGamqB6vqy639HeBuYBFwNk9/Qc8aBl/YQ+u/sgZuZnBLjaP7qk+S9Gy9hcKwJEuAVwC3AAur6sE26yGe/lrPRcD9Qy/b3Pq2f6+VSdYnWb9169b+ipak/VDvoZDkh4CPAe+oqmcchxi+8+qoqmp1VS2vquULFizYi5VKknoNhSTPYRAI/7eqPt66vzm1W6g9P9z6twDHDL18ceuTJI1Jb6HQ7q56BXB3Vf3h0Ky1wIrWXgFcN9R/fjsL6RTg8aHdTJKkMRj13ke741XALwN3JLmt9b0HuJjB9zNcCNwHvKnNuwE4E9gIfBe4oMfaJEnT6C0UqupveeYV0cNOm2b5Ai7qqx5J0q6N5ewjSdK+wVCQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHX6vEuqpP3IklXXT+yzN1181sQ+e65xS0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdT0ndj0zylEFJ+wa3FCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktTpLRSS/GmSh5PcOdR3ZJJ1Se5pz0e0/iS5LMnGJLcnObGvuiRJO9bnlsKfAadv17cKuLGqlgE3tmmAM4Bl7bESuLzHuiRJO9BbKFTVF4Bvb9d9NrCmtdcA5wz1X1kDNwPzkxzdV22SpOmN+5jCwqp6sLUfAha29iLg/qHlNre+Z0myMsn6JOu3bt3aX6WStB+a2IHmqiqgduN1q6tqeVUtX7BgQQ+VSdL+a9yh8M2p3ULt+eHWvwU4Zmi5xa1PkjRG4w6FtcCK1l4BXDfUf347C+kU4PGh3UySpDHp7ZvXkvwl8FPAUUk2A+8DLgauTnIhcB/wprb4DcCZwEbgu8AFfdUlSdqx3kKhqt68g1mnTbNsARf1VYskaTRe0SxJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6vR2l1RJGpclq66fyOduuvisiXxun9xSkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUseL1yZgUhfaSNKuuKUgSeoYCpKkjqEgSeoYCpKkjgeaJWk3TfKkkb7u0OqWgiSpYyhIkjqGgiSpM6uOKSQ5HfgAcCDwoaq6uK/P8gIySXq2WbOlkORA4I+AM4DjgDcnOW6yVUnS/mXWhAJwMrCxqu6tqqeAq4CzJ1yTJO1XZtPuo0XA/UPTm4Ef336hJCuBlW3yn5J8bQy1TcpRwLcmXcQEOX7H7/h3IJfs0Xv/yI5mzKZQGElVrQZWT7qOcUiyvqqWT7qOSXH8jt/xj3/8s2n30RbgmKHpxa1PkjQmsykUvgQsS7I0yXOB84C1E65JkvYrs2b3UVVtS/LrwKcYnJL6p1V114TLmrT9YjfZTjj+/Zvjn4BU1SQ+V5I0C82m3UeSpAkzFCRJHUNhDJLMT3JNkq8muTvJTyQ5IcnNSW5Lsj7Jydu95pVJtiU5d6hvRZJ72mPFUP9JSe5IsjHJZUkyzvHtykzHn+SnWv9dST4/1H96kq+1ca4a6l+a5JbW/5F2osKsMZPxJzk8ySeT/H0b/wVD7zOX1v/xSf5fq/uTSQ4bWv7dbSxfS/L6of65tP6nHX+S1ybZ0Po3JDl16H2mXc9Jjkyyrv1crEtyxB4VXFU+en4Aa4D/0NrPBeYDnwbOaH1nAp8bWv5A4LPADcC5re9I4N72fERrH9HmfRE4BQjw11PvO1seMxl/m/cV4Ng2/cKhf5N/BF7U3uPvgePavKuB81r7fwFvnfSY92D87wEuae0FwLfba+ba+v8S8JrW9yvAf23t49q6PQhY2tb5gXNw/e9o/K8Afri1/y2wZeh9pl3PwO8Bq1p71dTPz+4+3FLoWZLDgX8HXAFQVU9V1WNAAVN/HR0OPDD0st8APgY8PNT3emBdVX27qh4F1gGnJzkaOKyqbq7BT8WVwDn9jWhmdmP8vwh8vKq+0Zaf+jeY9jYo7a+lU4Fr2nJr2LfHX8ChbVw/xCAUtjH31v+PAl9oi60D3tDaZwNXVdX3q+rrwEYG636urf9px19Vt1bV1M/CXcDzkhy0i/V8NoNxw14Yv6HQv6XAVuD/JLk1yYeSPB94B/D7Se4H/gB4N0CSRcDPA5dv9z7T3QZkUXtsnqZ/tpjR+Bn8Zzkiyefa5vP5rX9H438B8FhVbduuf7aY6fg/CLyMQUjcAby9qn7A3Fv/d/H0vc3eyNMXru5snHNp/e9o/MPeAHy5qr7Pztfzwqp6sLUfAhbuScGGQv/mAScCl1fVK4AnGWzivRX4zao6BvhN2l8SwPuBd7VfBHPBTMc/DzgJOIvBX8f/OcmPjr3qvWem4389cBvww8AJwAeH97fvg3Y0/l8B3pZkA3Ao8NTkSuzVbo0/yb8BLgF+bSYf1rYi9ug6A0Ohf5uBzVV1S5u+hsEPyQrg463voww2jwGWA1cl2QScC/xxknPY8W1AtrT29v2zxUzHvxn4VFU9WVXfYrCJfTw7Hv8jwPwk87brny1mOv4LGOw+q6raCHwdeClzbP1X1Ver6nVVdRLwlwyOF8DOxzln1v9Oxk+SxcC1wPlVNfzvsqP1/M22e4n2PLzbecYMhZ5V1UPA/Ule0rpOY3Ag9QHgNa3vVOCetvzSqlpSVUsY/AC9rao+weBK79clOaKdXfA6Br88HwSeSHJK2796PnDdeEa3azMdP4PaX51kXpJDGNwp9252cBuU9pfRTQwCFAa/bPfl8X+jLUOShcBLGBxUnlPrP8kLAZIcALyXwQFiGNza5ry2H30psIzBAdY5tf53NP4k84HrGRw4/ruh99nZel7LYNywN8a/N46u+9jl2QcnAOuB24FPMDh75NXABgZnUdwCnDTN6/6MdvZRPX2Wwsb2uGCofzlwJ4O/Nj5Iu1J9tjxmOn7gtxn84rwTeMdQ/5nAP7Rx/s5Q/4sY/OLYyOCv7oMmPebdHT+D3UafZnA84U7gLXN0/b+9rct/AC4erhn4nTaWrzF0JtUcW//Tjp9BQDzJYBfi1GPqDLxp1zOD4yo3MvjD4jPAkXtSr7e5kCR13H0kSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSer8f8gepNqk90wtAAAAAElFTkSuQmCC\n",
Eva Zangerle's avatar
Eva Zangerle committed
391
392
393
394
395
396
397
398
399
400
401
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
Eva Zangerle's avatar
Eva Zangerle committed
402
403
404
    "# also: we can use this example to showcase the central limit theorem (again),\n",
    "# by changing the number of draws\n",
    "mean_distribution = bootstrap(loans_income, np.mean, 2000)\n",
Eva Zangerle's avatar
Eva Zangerle committed
405
406
407
408
409
    "mean_distribution.plot.hist()"
   ]
  },
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
410
   "execution_count": 12,
Eva Zangerle's avatar
Eva Zangerle committed
411
412
413
414
415
416
417
418
419
   "id": "3502af3a-32ba-4ce5-9a9d-d9c1c1b34ef3",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Bootstrap Statistics:\n",
      "original data: 68760.51844\n",
Eva Zangerle's avatar
Eva Zangerle committed
420
      "std. error: 146.94014472078567\n"
Eva Zangerle's avatar
Eva Zangerle committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
     ]
    }
   ],
   "source": [
    "print(\"Bootstrap Statistics:\")\n",
    "print(f\"original data: {loans_income.mean()}\")\n",
    "# we compute standard error of means via standard deviation\n",
    "# but: do not confuse the two\n",
    "print(f\"std. error: {mean_distribution.std()}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6827de04-fcd7-4a13-a9fb-0e507e9b21b3",
   "metadata": {},
   "source": [
    "## Confidence Interval"
   ]
  },
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
442
   "execution_count": 13,
Eva Zangerle's avatar
Eva Zangerle committed
443
444
445
446
447
448
449
450
451
452
453
454
455
   "id": "8eecd61a-5472-4f66-8403-b9d47814fb6d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "68760.51844\n"
     ]
    },
    {
     "data": {
      "text/plain": [
Eva Zangerle's avatar
Eva Zangerle committed
456
457
458
459
460
       "0      68708.77550\n",
       "1      68910.82054\n",
       "2      68500.55502\n",
       "3      68611.30680\n",
       "4      69153.30688\n",
Eva Zangerle's avatar
Eva Zangerle committed
461
       "          ...     \n",
Eva Zangerle's avatar
Eva Zangerle committed
462
463
464
465
466
       "195    68780.57418\n",
       "196    68905.92444\n",
       "197    68882.40432\n",
       "198    68749.35298\n",
       "199    68662.87792\n",
Eva Zangerle's avatar
Eva Zangerle committed
467
468
469
       "Length: 200, dtype: float64"
      ]
     },
Eva Zangerle's avatar
Eva Zangerle committed
470
     "execution_count": 13,
Eva Zangerle's avatar
Eva Zangerle committed
471
472
473
474
475
476
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
Eva Zangerle's avatar
Eva Zangerle committed
477
478
       "0.05    68526.175850\n",
       "0.95    68985.373425\n",
Eva Zangerle's avatar
Eva Zangerle committed
479
480
481
       "dtype: float64"
      ]
     },
Eva Zangerle's avatar
Eva Zangerle committed
482
     "execution_count": 13,
Eva Zangerle's avatar
Eva Zangerle committed
483
484
485
486
487
488
489
490
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print(loans_income.mean())\n",
    "# create a sample of 20 loan income data\n",
    "mean_distribution = bootstrap(loans_income, np.mean, 200)\n",
Eva Zangerle's avatar
Eva Zangerle committed
491
    "mean_distribution\n",
Eva Zangerle's avatar
Eva Zangerle committed
492
493
494
495
496
497
    "mean_distribution.quantile([0.05, 0.95])\n",
    "confidence_interval = list(mean_distribution.quantile([0.05, 0.95]))"
   ]
  },
  {
   "cell_type": "code",
Eva Zangerle's avatar
Eva Zangerle committed
498
   "execution_count": 14,
Eva Zangerle's avatar
Eva Zangerle committed
499
500
501
502
503
   "id": "c8cf6a73-a40b-4454-b1b6-91b0189374d4",
   "metadata": {},
   "outputs": [
    {
     "data": {
Eva Zangerle's avatar
Eva Zangerle committed
504
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAI4CAYAAAB3OR9vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAA050lEQVR4nO3debhcVZ0u4G9BmKeEGZlRhBCEIFHEpgUZBbVBQXAGQWPjiC220OrFFlvwGi/Q2NBGuRKnBgQEQbSFQESvKCQSGpBRDBKGEIYwJRCSrPvHKeImhJBTnJ3K8L7PU8+p2rWHX61Uqr6zztprl1prAACAPsv1ugAAAFicCMgAANAgIAMAQIOADAAADQIyAAA0CMgAANDQakAupXymlHJzKeWmUsp/lVJWLqVsWUr5QynlzlLKuaWUFdusAQAA+qO1gFxK2TjJp5KMqLVun2T5JO9O8vUkp9RaX5Xk0SRHtVUDAAD0V9tDLAYlWaWUMijJqknuT7JnkvM7z49JclDLNQAAwEIb1NaOa633llJGJflrkhlJfpVkQpJptdZZndUmJ9l4ftuXUkYmGZkkq6222s7bbrttW6UCALAMmjBhwkO11vXmXd5aQC6lDElyYJItk0xL8pMkb1nY7Wuto5OMTpIRI0bU8ePHt1AlAADLqlLK3fNb3uYQi72T/KXWOrXW+mySC5P8XZLBnSEXSbJJkntbrAEAAPqlzYD81yRvKKWsWkopSfZK8qckVyU5pLPO4UkubrEGAADol9YCcq31D+k7Ge+PSW7sHGt0ks8n+adSyp1J1klyVls1AABAf7U2BjlJaq0nJDlhnsV3JXl9m8cFAIBuuZIeAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMgAANAgIAMAQIOADAAADQIyAAA0CMjM17Rp03LIIYdk2223zdChQ3PNNddk4sSJecMb3pDhw4dnxIgRufbaa5Mk48aNy1prrZXhw4dn+PDh+cpXvpIkueeee/LmN7852223XYYNG5bTTjvtecc4/fTTs+2222bYsGH553/+50X+GgF4cf35Hnj00Ufzjne8IzvssENe//rX56abbpq7n1NOOSXDhg3L9ttvn/e85z15+umnkyRHHHFEttxyy7nfHRMnTuzFy4T5q7W2ckuyTZKJjdvjSY5JsnaSy5Pc0fk55KX2tfPOO1cWrQ9+8IP1O9/5Tq211meeeaY++uijdZ999qmXXXZZrbXWn//853X33XevtdZ61VVX1be+9a0v2Md9991XJ0yYUGut9fHHH69bb711vfnmm2uttV555ZV1r732qk8//XSttdYpU6a0/ZIA6If+fA8ce+yx9ctf/nKttdZbbrml7rnnnrXWWidPnly32GKLOn369Fprre9617vq9773vVprrYcffnj9yU9+sghfEbxQkvF1PtmztR7kWutttdbhtdbhSXZOMj3JT5Mcl2RsrXXrJGM7j1mMPPbYY7n66qtz1FFHJUlWXHHFDB48OKWUPP7443PXecUrXrHA/Wy00UZ57WtfmyRZY401MnTo0Nx7771JkjPPPDPHHXdcVlpppSTJ+uuv39bLAaCf+vs98Kc//Sl77rlnkmTbbbfNpEmTMmXKlCTJrFmzMmPGjMyaNSvTp09/ye8OWBwsqiEWeyX5c6317iQHJhnTWT4myUGLqAYW0l/+8pest956+dCHPpSddtopH/7wh/PUU0/l1FNPzec+97lsuummOfbYY3PSSSfN3eaaa67JjjvumP333z8333zzC/Y5adKkXH/99dlll12SJLfffnt+85vfZJdddsnuu++e6667bpG9PgAWrL/fAzvuuGMuvPDCJMm1116bu+++O5MnT87GG2+cY489Nptttlk22mijrLXWWtl3333nHucLX/hCdthhh3zmM5/JM88805PXCvOzqALyu5P8V+f+BrXW+zv3H0iywfw2KKWMLKWML6WMnzp16qKokY5Zs2blj3/8Y44++uhcf/31WW211XLyySfnzDPPzCmnnJJ77rknp5xyytyehde+9rW5++67c8MNN+STn/xkDjrooOft78knn8zBBx+cU089NWuuuebcYzzyyCP5/e9/n2984xs59NBDnxuaA0CP9fd74Ljjjsu0adMyfPjwnH766dlpp52y/PLL59FHH83FF1+cv/zlL7nvvvvy1FNP5Yc//GGS5KSTTsqtt96a6667Lo888ki+/vWv9/Ilw/PNb9zFQN6SrJjkofQF4ySZNs/zj77UPoxBXrTuv//+uvnmm899fPXVV9cDDjigrrnmmnXOnDm11lrnzJlT11hjjfluv/nmm9epU6fWWmudOXNm3Xfffes3v/nN562z33771SuvvHLu46222qo++OCDA/xKAOjGy/kemDNnTt18883rY489Vs8777x65JFHzn1uzJgx9eijj37BNi92Lgu0LYt6DHLD/kn+WGud0nk8pZSyUZJ0fj64CGqgHzbccMNsuummue2225IkY8eOzXbbbZdXvOIV+fWvf50kufLKK7P11lsnSR544IG5vb/XXntt5syZk3XWWSe11hx11FEZOnRo/umf/ul5xzjooINy1VVXJekbbjFz5sysu+66i+olArAA/f0emDZtWmbOnJkk+e53v5s3velNWXPNNbPZZpvl97//faZPn55aa8aOHZuhQ4cmSe6/v++PybXWXHTRRdl+++0X9cuEFzVoERzjPfnb8Iok+VmSw5Oc3Pl58SKogX46/fTT8773vS8zZ87MVlttle9973s58MAD8+lPfzqzZs3KyiuvnNGjRydJzj///Jx55pkZNGhQVllllZxzzjkppeS3v/1tfvCDH+Q1r3lNhg8fniT52te+lgMOOCBHHnlkjjzyyGy//fZZccUVM2bMmJRSeviKAWjqz/fALbfcksMPPzyllAwbNixnnXVWkmSXXXbJIYcckte+9rUZNGhQdtppp4wcOTJJ8r73vS9Tp05NrTXDhw/Pf/7nf/bstcK8ynM9f63svJTVkvw1yVa11sc6y9ZJcl6SzZLcneTQWusjC9rPiBEj6vjx41urEwCAZU8pZUKtdcS8y1vtQa61PpVknXmWPZy+WS0AAGCx40p6AADQICADAECDgAwAAA0CMgAANAjIAADQICADAECDgAwAAA0CMgAANAjIAADQICADAECDgAwAAA0CMgAANAjIAADQICADAECDgAwAAA0CMgAANAjIAADQICADAECDgAwAAA0CMgAANAjIAADQICADAECDgAwAAA0CMgAANAjIAADQICADAECDgMyAOeaYY3LMMcf0ugwAesT3AEuLQb0ugKXHxIkTe10CAD3ke4ClhR5kAABoEJABAKBBQAYAgAYBGQAAGgRkAABoEJABAKBBQAYAgAYBGQAAGgRkAABoEJABAKBBQAYAgAYBGQAAGgRkAABoEJABAKBBQAYAgAYBGQAAGgRkAABoEJABAKBBQAYAgAYBGQAAGgRkAABoEJABAKBBQAYAgAYBGQAAGgRkAABoEJABAKBBQAYAgAYBGQAAGgRkAABoEJCBpc5pp52W7bffPsOGDcupp546d/kjjzySffbZJ1tvvXX22WefPProo0mSCy64IMOGDcvf//3f5+GHH06S/PnPf85hhx32osc44IADMm3atAXWcfbZZ+e+++572a/npXz5y1/OqFGjWj8OwLKi1YBcShlcSjm/lHJrKeWWUsqupZS1SymXl1Lu6Pwc0mYNwLLlpptuyne+851ce+21ueGGG3LppZfmzjvvTJKcfPLJ2WuvvXLHHXdkr732ysknn5wkOf3003Pdddflox/9aH784x8nSb74xS/mq1/96ose57LLLsvgwYMXWEs3AXnWrFn9Wh+Agdd2D/JpSX5Za902yY5JbklyXJKxtdatk4ztPAYYELfcckt22WWXrLrqqhk0aFB23333XHjhhUmSiy++OIcffniS5PDDD89FF12UJFluueXyzDPPZPr06VlhhRXym9/8JhtuuGG23nrrFz3OFltskYceeiiTJk3K0KFD85GPfCTDhg3LvvvumxkzZuT888/P+PHj8773vS/Dhw/PjBkzMmHChOy+++7Zeeeds99+++X+++9Pkuyxxx455phjMmLEiPzbv/1bNt9888yZMydJ8tRTT2XTTTfNs88+m+985zt53etelx133DEHH3xwpk+f3mJLAiy7WgvIpZS1krwpyVlJUmudWWudluTAJGM6q41JclBbNQDLnu233z6/+c1v8vDDD2f69Om57LLLcs899yRJpkyZko022ihJsuGGG2bKlClJkuOPPz577713LrnkkrznPe/JiSeemC996UsLfcw77rgjH//4x3PzzTdn8ODBueCCC3LIIYdkxIgR+dGPfpSJEydm0KBB+eQnP5nzzz8/EyZMyJFHHpkvfOELc/cxc+bMjB8/PieccEKGDx+eX//610mSSy+9NPvtt19WWGGFvPOd78x1112XG264IUOHDs1ZZ501UM0GQMOgFve9ZZKpSb5XStkxyYQkn06yQa31/s46DyTZYH4bl1JGJhmZJJtttlmLZQJLk6FDh+bzn/989t1336y22moZPnx4ll9++ResV0pJKSVJss8++2SfffZJknz/+9/PAQcckNtvvz2jRo3KkCFDctppp2XVVVd90WNuueWWGT58eJJk5513zqRJk16wzm233Zabbrpp7nFmz549N6wned5458MOOyznnntu3vzmN+ecc87Jxz72sSR9w0e++MUvZtq0aXnyySez33779a9xAFgobQ6xGJTktUnOrLXulOSpzDOcotZak9T5bVxrHV1rHVFrHbHeeuu1WCawtDnqqKMyYcKEXH311RkyZEhe/epXJ0k22GCDucMa7r///qy//vrP22769Ok5++yz8/GPfzwnnHBCxowZk9122y0/+tGPFni8lVZaae795Zdffr7jiGutGTZsWCZOnJiJEyfmxhtvzK9+9au5z6+22mpz7//DP/xDfvnLX+aRRx7JhAkTsueeeyZJjjjiiHzrW9/KjTfemBNOOCFPP/10P1sGgIXRZkCenGRyrfUPncfnpy8wTymlbJQknZ8PtlgDsAx68MG+j5W//vWvufDCC/Pe9743SV/wHDOmb4TXmDFjcuCBBz5vu2984xv51Kc+lRVWWCEzZsxIKSXLLbdc12N911hjjTzxxBNJkm222SZTp07NNddckyR59tlnc/PNN893u9VXXz2ve93r8ulPfzpve9vb5vaAP/HEE9loo43y7LPPvmRoB6B7rQ2xqLU+UEq5p5SyTa31tiR7JflT53Z4kpM7Py9uqwZg2XTwwQfn4YcfzgorrJD/+I//mDvbxHHHHZdDDz00Z511VjbffPOcd955c7e57777cu211+aEE05Iknzyk5/M6173ugwePHjuyXz9dcQRR+Qf//Efs8oqq+Saa67J+eefn0996lN57LHHMmvWrBxzzDEZNmzYfLc97LDD8q53vSvjxo2bu+zEE0/MLrvskvXWWy+77LLL3PANwMAqfaMcWtp5KcOTfDfJiknuSvKh9PVan5dksyR3Jzm01vrIgvYzYsSIOn78+NbqZGDsscceSfK8L3QAlh2+B1jSlFIm1FpHzLu8zZP0UmudmOQFB01fbzIAACx2XEkPAAAaBGQAAGgQkAEAoEFABgCABgEZAAAaBGQAAGgQkAEAoEFABgCABgEZAAAaBGQAAGgQkAEAoEFABgCABgEZAAAaBGQAAGgQkAEAoEFABgCABgEZAAAaBGQAAGgQkAEAoEFABgCABgEZAAAaBGQAAGgQkAEAoEFABgCABgEZAAAaBGQAAGgY1OsCWHrceeedefLJJ7PHHnv0uhQAemDixIlZffXVe10GvGx6kAEAoEEPMgPmVa96VZJk3LhxvS0EgJ7wF0SWFnqQAQCgQUAGAIAGARkAABoEZAAAaBCQAQCgQUAGAIAGARkAABoEZAAAaBCQAQCgQUAGAIAGARkAABoEZAAAaBCQAQCgQUAGAIAGARkAABoEZAAAaBCQAQCgQUAGAIAGARkAABoEZAAAaBCQAQCgQUAGAIAGARkAABoEZAAAaBCQAQCgQUAGAIAGARkAABoEZAAAaBjU5s5LKZOSPJFkdpJZtdYRpZS1k5ybZIskk5IcWmt9tM06AABgYS2KHuQ311qH11pHdB4fl2RsrXXrJGM7jwEAYLHQiyEWByYZ07k/JslBPagBAADmq+2AXJP8qpQyoZQysrNsg1rr/Z37DyTZYH4bllJGllLGl1LGT506teUyAQbWQw89lIceeqjXZQDQhVbHICfZrdZ6byll/SSXl1JubT5Za62llDq/DWuto5OMTpIRI0bMdx2AxdW6667b6xIA6FKrPci11ns7Px9M8tMkr08ypZSyUZJ0fj7YZg0AvXD22Wfn7LPP7nUZAHShtYBcSlmtlLLGc/eT7JvkpiQ/S3J4Z7XDk1zcVg0AvSIgAyy52hxisUGSn5ZSnjvOj2utvyylXJfkvFLKUUnuTnJoizUAAEC/tBaQa613JdlxPssfTrJXW8cFAICXw5X0AACgQUAGAICGtqd5A1gmXXbZZb0uAYAuCcgALVh11VV7XQIAXTLEAqAFZ5xxRs4444xelwFAFwRkgBacd955Oe+883pdBgBdEJABAKBBQAYAgAYBGQAAGgRkAABoMM0bQAvGjRvX6xIA6JIeZAAAaBCQAVowatSojBo1qtdlANAFARmgBZdeemkuvfTSXpcBQBcEZAAAaBCQAQCgQUAGAIAG07wBtGCVVVbpdQkAdElABmjBL37xi16XAECXDLEAAIAGARmgBSeeeGJOPPHEXpcBQBcEZIAWjB07NmPHju11GQB0QUAGAIAGARkAABoEZAAAaDDNG0AL1llnnV6XAECXBGSAFlxwwQW9LgGALhliAQAADQIyQAuOP/74HH/88b0uA4AuGGIB0IJrrrmm1yUA0CU9yAAA0CAgAwBAg4AMAAANxiADtGCTTTbpdQkAdElABmjBD3/4w16XAECXDLEAAIAGARmgBcccc0yOOeaYXpcBQBcMsQBowcSJE3tdAgBd0oMMAAANAjIAADQIyAAA0GAMMkALXv3qV/e6BAC6JCADtGD06NG9LgGALhliAQAADQIyQAtGjhyZkSNH9roMALpgiAVAC26//fZelwBAl/rdg1xKGVJK2aGNYgAAoNcWKiCXUsaVUtYspayd5I9JvlNK+T/tlgYAAIvewvYgr1VrfTzJO5N8v9a6S5K92ysLAAB6Y2HHIA8qpWyU5NAkX2ixHoClwvDhw3tdAgBdWtiA/K9J/jvJb2ut15VStkpyR3tlASzZTj311F6XAECXFjYg319rnXtiXq31LmOQAQBYGi3sGOTTF3IZAEne//735/3vf3+vywCgCwvsQS6l7JrkjUnWK6X8U+OpNZMs32ZhAEuyyZMn97oEALr0UkMsVkyyeme9NRrLH09ySFtFAQBArywwINdaf53k16WUs2utdy+imgAAoGcW9iS9lUopo5Ns0dym1rpnG0UBAECvLGxA/kmS/0zy3SSz2ysHYOmw66679roEALq0sAF5Vq31zG4OUEpZPsn4JPfWWt9WStkyyTlJ1kkyIckHaq0zu9k3wOLqpJNO6nUJAHRpYad5u6SU8rFSykallLWfuy3ktp9Ockvj8deTnFJrfVWSR5Mc1Y96AQCgVQsbkA9P8rkkv0tfr++E9PUKL1ApZZMkb03f0IyUUkqSPZOc31llTJKD+lUxwBLg4IMPzsEHH9zrMgDowkINsai1btnl/k9N8s/52xRx6ySZVmud1Xk8OcnG89uwlDIyycgk2Wyzzbo8PEBvPPzww70uAYAuLVRALqV8cH7La63fX8A2b0vyYK11Qillj/4WVmsdnWR0kowYMaL2d3sAAOjGwp6k97rG/ZWT7JXkj0leNCAn+bsk/1BKOaCzzZpJTksyuJQyqNOLvEmSe/tdNQAAtGRhh1h8svm4lDI4fTNRLGib45Mc31l/jyTH1lrfV0r5SfquwndO+sY2X9zfogEAoC0L24M8r6eSdDsu+fNJzimlfDXJ9UnO6nI/AIutvfbaq9clANClhR2DfEmS58YBL59kaJLzFvYgtdZxScZ17t+V5PX9KRJgSfOlL32p1yUA0KWF7UEe1bg/K8ndtdbJLdQDAAA9tVDzINdaf53k1vRN1zYkiSvfASzA/vvvn/3337/XZQDQhYUKyKWUQ5Ncm+RdSQ5N8odSyiFtFgawJJsxY0ZmzJjR6zIA6MLCDrH4QpLX1VofTJJSynpJrsjfrogHAABLhYW91PRyz4Xjjof7sS0AACwxFrYH+ZellP9O8l+dx4cluaydkgAAoHcWGJBLKa9KskGt9XOllHcm2a3z1DVJftR2cQBLqre97W29LgGALr1UD/Kp6VwNr9Z6YZILk6SU8prOc29vsTaAJdaxxx7b6xIA6NJLjSPeoNZ647wLO8u2aKUiAADooZcKyIMX8NwqA1gHwFJljz32yB577NHrMgDowksF5PGllI/Mu7CU8uEkE9opCQAAeuelxiAfk+SnpZT35W+BeESSFZO8o8W6AACgJxYYkGutU5K8sZTy5iTbdxb/vNZ6ZeuVAQBADyzUPMi11quSXNVyLQAA0HMLe6EQAPrh0EMP7XUJAHRJQAZowcc+9rFelwBAl15qFgsAujB9+vRMnz6912UA0AU9yAAtOOCAA5Ik48aN620hAPSbHmQAAGgQkAEAoEFABgCABgEZAAAanKQH0IIjjjii1yUA0CUBGaAFAjLAkssQC4AWPPTQQ3nooYd6XQYAXdCDDNCCQw45JIl5kAGWRHqQAQCgQUAGAIAGARkAABoEZAAAaHCSHkALjj766F6XAECXBGSAFhx22GG9LgGALhliAdCCe+65J/fcc0+vywCgC3qQAVrwgQ98IIl5kAGWRHqQAQCgQUAGAIAGARkAABoEZAAAaHCSHkALPvvZz/a6BAC6JCADtODtb397r0sAoEuGWAC04Lbbbsttt93W6zIA6IIeZIAWfPSjH01iHmSAJZEeZAAAaBCQAQCgQUAGAIAGARkAABqcpAfQgi9+8Yu9LgGALgnIAC3Ye++9e10CAF0yxAKgBRMnTszEiRN7XQYAXdCDDNCCY445Jol5kAGWRHqQAQCgQUAGAIAGARkAABoEZAAAaHCSHkALvva1r/W6BAC6JCADtOCNb3xjr0sAoEuGWAC04He/+11+97vf9boMALqgBxmgBf/yL/+SxDzIAEui1nqQSykrl1KuLaXcUEq5uZTyr53lW5ZS/lBKubOUcm4pZcW2agAAgP5qc4jFM0n2rLXumGR4kreUUt6Q5OtJTqm1virJo0mOarEGAADol9YCcu3zZOfhCp1bTbJnkvM7y8ckOaitGgAAoL9aPUmvlLJ8KWVikgeTXJ7kz0mm1VpndVaZnGTjF9l2ZCllfCll/NSpU9ssEwAA5mr1JL1a6+wkw0spg5P8NMm2/dh2dJLRSTJixIjaSoEALTn11FN7XQIAXVoks1jUWqeVUq5KsmuSwaWUQZ1e5E2S3LsoagBYlIYPH97rEgDoUpuzWKzX6TlOKWWVJPskuSXJVUkO6ax2eJKL26oBoFeuuOKKXHHFFb0uA4AutNmDvFGSMaWU5dMXxM+rtV5aSvlTknNKKV9Ncn2Ss1qsAaAnvvrVryZJ9t577x5XAkB/tRaQa63/k2Sn+Sy/K8nr2zouAAC8HC41DQAADQIyAAA0CMgAANCwSKZ5A1jWfPvb3+51CQB0SUAGaME222zT6xIA6JIhFgAtuOSSS3LJJZf0ugwAuqAHGaAF3/zmN5Mkb3/723tcCQD9pQcZAAAaBGQAAGgQkAEAoEFABgCABifpAbTgBz/4Qa9LAKBLAjJACzbddNNelwBAlwyxAGjBueeem3PPPbfXZQDQBT3IAC0488wzkySHHXZYjysBoL/0IAMAQIOADAAADQIyAAA0CMgAANDgJD2AFpx//vm9LgGALgnIAC1Yd911e10CAF0yxAKgBWeffXbOPvvsXpcBQBcEZIAWCMgASy4BGQAAGgRkAABoEJABAKBBQAYAgAbTvAG04LLLLut1CQB0SUAGaMGqq67a6xIA6JIhFgAtOOOMM3LGGWf0ugwAuiAgA7TgvPPOy3nnndfrMgDogoAMAAANAjIAADQIyAAA0CAgAwBAg2neAFowbty4XpcAQJf0IAMAQIOADNCCUaNGZdSoUb0uA4AuCMgALbj00ktz6aWX9roMALogIAMAQIOADAAADQIyAAA0mOYNoAWrrLJKr0sAoEsCMkALfvGLX/S6BAC6ZIgFAAA0CMgALTjxxBNz4okn9roMALogIAO0YOzYsRk7dmyvywCgCwIyAAA0CMgAANAgIAMAQINp3gBasM466/S6BAC6JCADtOCCCy7odQkAdMkQCwAAaBCQAVpw/PHH5/jjj+91GQB0wRALgBZcc801vS4BgC7pQQYAgAYBGQAAGloLyKWUTUspV5VS/lRKubmU8unO8rVLKZeXUu7o/BzSVg0AANBfbfYgz0ry2VrrdknekOTjpZTtkhyXZGytdeskYzuPAZYqm2yySTbZZJNelwFAF1o7Sa/Wen+S+zv3nyil3JJk4yQHJtmjs9qYJOOSfL6tOgB64Yc//GGvSwCgS4tkFotSyhZJdkryhyQbdMJzkjyQZIMX2WZkkpFJstlmmy2CKgFe2hbH/XxA9zfp5LcO6P4AePlaP0mvlLJ6kguSHFNrfbz5XK21Jqnz267WOrrWOqLWOmK99dZru0yAAfXIFaPzyBWje10GAF1otQe5lLJC+sLxj2qtF3YWTymlbFRrvb+UslGSB9usAaAXZj54V69LAKBLbc5iUZKcleSWWuv/aTz1sySHd+4fnuTitmoAAID+arMH+e+SfCDJjaWUiZ1l/5Lk5CTnlVKOSnJ3kkNbrAEAAPqlzVksfpukvMjTe7V1XAAAeDkWySwWAMuaFdbeuNclANAlARmgBeu85ZO9LgGALrU+zRsAACxJBGSAFjz8y9Pz8C9P73UZAHTBEAuAFjz7yL29LgGALulBBgCABgEZAAAaBGQAAGgwBhmgBSuuv1WvSwCgSwIyQAvW3ntkr0sAoEuGWAAAQIOADNCChy4ZlYcuGdXrMgDogiEWAC2Y9cRDvS4BgC7pQQYAgAYBGQAAGgRkAABoMAYZoAUrbbxtr0sAoEsCMkALhux+RK9LAKBLhlgAAECDgAzQgqk//Vqm/vRrvS4DgC4YYgHQgtkzHu91CQB0SUAG6KEtjvv5gO5v0slvHdD9ASyLDLEAAIAGARkAABoMsQBowcqb79jrEgDokoAM0ILBf/eeXpcAQJcMsQAAgAYBGaAFU847IVPOO6HXZQDQBUMsAFpQZz3T6xIA6JIeZAAAaBCQAQCgQUAGAIAGY5ABWrDKK1/f6xIA6JKADNCCtXZ5Z69LAKBLAjKwWNniuJ/3ugQAlnHGIAO04IEfH5cHfnxcr8sAoAsCMgAANAjIAADQICADAECDgAwAAA1msQBowWrb/n2vSwCgSwIyLEMGegq1SSe/dUD3tzRZ47W9aZtl8d94WXzNQLsMsQBowZxnn86cZ5/udRkAdEEPMkALHvzJl5MkG7735N4WAkC/6UEGAIAGARkAABoEZAAAaBCQAQCgwUl6AC1Y/TV797qEATHQU6glplEDFn8CMkALlpaADLAsMsQCoAWzpz+W2dMf63UZAHRBQAZowdSLTsrUi07qdRkAdMEQC2Cp8Zl9ts7Gg1fpdRlJkhk7n5gkWWWrHXpcyfPdO21GTrn8jl6XAbBYE5CBpcbGg1fJ5Edn9LqMJMmTk+9Lkqw+ZLseV/J8mwxZPH6BAFicGWIBAAANAjIAADQYYgHQghU33LrXJQDQJQEZWKp9Zp9tsvNeb8/7jxuVJJk9e1ZOOGy3bL7tjvnIV7/d2nFXXG/z5z2+84Y/5KdnfC2zZ8/K6msOySf+zw+TJOMuODu//8VPUkrJRlu8Ou/53ElZYcWV8u+feW+emf5UkuTJaQ9ns213yFH/esYC93XLdVfnp2f8W+qcOdll/3dl73ePbO31ASzNWgvIpZT/m+RtSR6stW7fWbZ2knOTbJFkUpJDa62PtlUDwIorr5r7/3JHZj7zdFZcaeXcPuH/Za11Nmj9uHOemZ4kWW6lVTPjycdz/r//az560nczZP1X5IlHH06STHtoSn5z0ffz+e9elhVXWjlnn/jpXH/Vz/P6/d6ZT53y47n7+t6/fjLbv3GvJHnRfc2ZPTsXnP6V/OPXv5fB626QUz5xSLbfdc9suPmrWn+tAEubNscgn53kLfMsOy7J2Frr1knGdh4DtGq71++eP/1hXJLkj1f9PK99898udfzMjOn5r1HH55RPHJJR/3hQbvzdFUmSRx6YnH//zHsz6uh3ZNTR78hfbv5jkr7e22999gP53lc+lZOOfEt+cNJnU2t9wTGn3/67TL/9d0mSCVdekh122ydD1n9FkmSNIevMXW/O7Nl59pmnM3v2rDz7zNNZc531n7efp596MndM/H1e88a9F7ivv972P1n3FZtn3Y02zaAVVsxOe7w1N/1u7MtuO4BlUWsBudZ6dZJH5ll8YJIxnftjkhzU1vEBnrPTmw/I9eMuy7Mzn8l9d92WzYfuOPe5K378n9l6+BvymW+dn4+P+n4uGf2NPDNjelYfvE6O/vr3cuyZP83hXzglF/7HV+duc++df8o7jv6XfP67l+Xh+yfnLzdPSJL84uzT5htKp06elOlPPJ5vffYD+ebH3pnrLr8oSTJ43Q2yxyFH5ivve3NOOGy3rLza6tl2xG7P2/bG312RrXfaNSuvtvoC9zXtoSkZvN6Gc7dba90N8thDUwak/QCWNYt6DPIGtdb7O/cfSPKif+cspYxMMjJJNttss0VQGrx8Wxz38wHd36ST3/rSK/GSXrHVtnnkgcn545WXZrvX7/68526d8Nvc9Psrc9VP/m+S5NmZz2Tag/dnzXXXzwWnfiX3/fnWlOWWy9R7J83dZrNtd5gbRjd+5bZ55IF7s9X2I7L/EZ+e7/HnzJ6dyXfcnKP/99l5dubTOe1T787mQ3fM6mutnZuuGZsv/WBsVll9jZx94qcz/oqLM2LvA+du+8erLs0b9n/XS+4LgIHTs5P0aq21lPLCv0v+7fnRSUYnyYgRI150PYCFsf2ue+Zno/93Pv7N72f649Oe99yH/te/Z/1Nt3resl9+//SsMWTdHPvti1PrnPzzAX+7It6gFVace3+55ZbPnNmzF3jstdbbMKuuOTgrrbJqVlpl1bxyhxG578+3JknW2XCTrD547STJDrvtm0l/un5uQH7ysUfy11tvzJFf/o+X3Nfg9TbMtKkPzF3vsYemZK112x9rDbA0WtTzIE8ppWyUJJ2fDy7i4wPLqF3eckj2+8DH84ott3ne8m133i2/ueiHc8cRT77zT0mSGU89kTXXXi/LLbdcxl9+cebMWXAIXpDX7LpX/nLThMyePSszn56Ru2/9n2yw2SszZP1XZNItN2Tm0zNSa83t11+T9Td75dztbrj6v7PdG/bICiuu9JL72nSb12TqvZPy8P33ZNazM3P9uJ9n2K57dl0zwLJsUfcg/yzJ4UlO7vy8eBEfH1hGDV5vw7zpHR98wfJ93v+xXHTm1/KNkf+QOXVO1tlwk3zkq9/Obm9/b773lU9m/BUXZdsRf58VV171JY/xi7NPy6av3j7bv3GvrLTx0LnLN9j8ldn2dX+fb4z8h5Tllssb9j8kG2356iTJjn+/X775sXdkueUHZeNXDs0bDzhs7nbXj7sse737I887xoL2dfAn/le+ffyHM2fO7Oyy38HZaAtzMQN0o8zv7OsB2XEp/5VkjyTrJpmS5IQkFyU5L8lmSe5O3zRv857I9wIjRoyo48ePb6VOBs4ee+yRJBk3blxP6+ilxX0M8uJeX/Lyahz1rh0y+dEZA1jN0meTIavk2J/8T09rWBbf18sK3wMsaUopE2qtI+Zd3loPcq31PS/y1F5tHRNgcTF7+uNJkuVXXbPHlQDQX4t6DDLAMmHGn6/NjD9f2+syAOiCS00DXRvoP20DwOJADzIAADToQQaWGvdOm5FNhqzS6zKSJDM26bsU9CqLST3PuXeakxgBXoqADCw1Trn8jl6XMNcDP/5SkmTD957c40oA6C8BGaAFa73x3b0uAYAuCcgALVhli+G9LgGALgnIAC2YOeWuJMmKG2zV40roLxceAcxiAdCCR8aOziNjR/e6DAC6ICADAECDgAwAAA0CMgAANAjIAADQYBYLgBYMftPhvS4BgC4JyAAtWHmTob0uYbE10NOoAQw0QywAWvD05Fvy9ORbel0GAF0QkAFaMO3qMZl29ZhelwFAFwRkAABoEJABAKBBQAYAgAYBGQAAGkzzBosx02Etudbea2SvS4CFMpCfMw/c9XDesNU6A7Y/6BUBGaAFK26wVa9LAKBLhlgAtGDGpImZMWlir8sAoAt6kAFa8NjvzkmSrLLF8N4WAkC/6UEGAIAGARkAABoMsWCJMtCzOkw6+a0Duj8AYMmnBxkAABr0IAO0YJ39PtHrEgDokoAM0IIV1tmk1yUA0CVDLABaMP3OP2T6nX/odRkAdEEPMkALHr/2p0mSVV+1S48rAaC/9CADAECDHmTmerlTqD1w18Mv2M/iPo3aQE8bBwAs+fQgAwBAg4AMAAANhlgAtGDdt3221yUA0CUBGaAFg9Zcr9clANAlQywAWvDULVfnqVuu7nUZAHRBDzJAC564/rIkyWpD39TjSgDoLwF5CbYkTFG2JNQI0KZl7XPw93c9POCveXGfMpSljyEWAADQICADAECDgAwAAA3GIAO0YL2Dju91CQB0SUAGaMHyq67V6xIA6JKAvADL2pnHwMB58sYrkiSrv2bvHlcCzGtx/343a0fvGYMM0IInb7xibkgGYMkiIAMAQIOADAAADQIyAAA0CMgAANBgFguAFqz/ri/3ugQAuiQgA7RguRVW7nUJsNRY3KdlG2gD/XoHetq4xb2+gWCIBUALnvjjz/PEH5etL3WApYWADNCCp279TZ669Te9LgOALgjIAADQ0JOAXEp5SynltlLKnaWU43pRAwAAzM8iD8illOWT/EeS/ZNsl+Q9pZTtFnUdAAAwP73oQX59kjtrrXfVWmcmOSfJgT2oAwAAXqDUWhftAUs5JMlbaq0f7jz+QJJdaq2fmGe9kUlGdh5uk+ThJA8tylqXcutGew4k7TmwtOfA0p4DS3sOLO058LTpwtu81rrevAsX23mQa62jk4x+7nEpZXytdUQPS1qqaM+BpT0HlvYcWNpzYGnPgaU9B542ffl6McTi3iSbNh5v0lkGAAA914uAfF2SrUspW5ZSVkzy7iQ/60EdAADwAot8iEWtdVYp5RNJ/jvJ8kn+b6315oXYdPRLr0I/aM+BpT0HlvYcWNpzYGnPgaU9B542fZkW+Ul6AACwOHMlPQAAaBCQAQCgoRdX0htcSjm/lHJrKeWWUsqupZThpZTfl1ImllLGl1JeP882ryulzOrMofzcssNLKXd0boc3lu9cSrmxcxnrfy+llEX5+ha1/rRnKWWPUspjneUTSyn/q7Gf+V7+u3My5R86y8/tnFi51Orv+7PTphNLKTeXUn7dWK490+/35+ca782bSimzSylrd57Tnul3e65VSrmklHJD5/35ocZ+fH6m3+05pJTy01LK/5RSri2lbN/Yj/dnXrQ9dyylXNN5X11SSlmzsf7xnba5rZSyX2O59kz/2rOUsk4p5apSypOllG/Ns5/5/r8upaxdSrm88zlweSllSC9e52Kr1rpIb0nGJPlw5/6KSQYn+VWS/TvLDkgyrrH+8kmuTHJZkkM6y9ZOclfn55DO/SGd565N8oYkJckvntvv0nrrT3sm2SPJpfPZx/JJ/pxkq84+bkiyXee585K8u3P/P5Mc3evXvBi15+Akf0qyWefx+tqz+/acZ7u3J7lSe76s9+e/JPl65/56SR7pbOPzs7v2/EaSEzr3t00y1vtzodrzuiS7d5YdmeTEzv3tOm21UpItO224vPbsuj1XS7Jbkn9M8q159jPf/9dJ/neS4zr3j3vu88Kt77ZIe5BLKWsleVOSs5Kk1jqz1jotSU3y3G+VayW5r7HZJ5NckOTBxrL9klxea32k1vpoksuTvKWUslGSNWutv699/+LfT3JQe6+ot7psz/mZ7+W/O79l7pnk/M56Y6I9m+353iQX1lr/2ln/ufeo9szLfn++J8l/de5rz3TVnjXJGp12Wj19AXlWfH4m6ao9t0tfZ01qrbcm2aKUskG8P5MssD1fneTqzmqXJzm4c//AJOfUWp+ptf4lyZ3pa0vtmf63Z631qVrrb5M8Pc9+FvT/+sD0tWOylLdnNxb1EIstk0xN8r1SyvWllO+WUlZLckySb5RS7kkyKsnxSVJK2TjJO5KcOc9+Nk5yT+Px5M6yjTv3512+tOpXe3bs2vmT6y9KKcM6y16sPddJMq3WOmue5Uur/rbnq5MMKaWMK6VMKKV8sLNce/bp5v2ZUsqqSd6Svl+ME+35nP6257eSDE1fwLsxyadrrXPi8/M5/W3PG5K8M0k6wy42T9+Frrw/+7xYe96cviCWJO/K3y4UtqD3ofbsf3u+mAX9v96g1np/5/4DSTYYkMqXEos6IA9K8tokZ9Zad0ryVPq69Y9O8pla66ZJPpPOb0xJTk3y+c6HOi/U3/b8Y/quOb5jktOTXLTIK1689bc9ByXZOclb09cr96VSyqsXedWLr/6253PenuT/1VofWZTFLgH62577JZmY5BVJhif5VnP8J/1uz5OTDC6lTEzfXzavTzJ7URe9GHux9jwyycdKKROSrJFkZu9KXKIs0vbs9C6b97dhUQfkyUkm11r/0Hl8fvreAIcnubCz7Cfp+xNLkoxIck4pZVKSQ5KcUUo5KC9+uep7O/fnXb606ld71lofr7U+2bl/WZIVSinr5sXb8+H0fSEMmmf50qq/78/JSf6786eth9L3Z68doz2f09/2fM6787fhFYn2fE5/2/ND6RsCVGutdyb5S/rGzvr87NPN5+eHaq3Dk3wwfeO674r353Pm25611ltrrfvWWndO3//rP3eeX9D7UHv2vz1fzIL+X0/pDMF4bijGg2GuRRqQa60PJLmnlLJNZ9Fe6TvJ6b4ku3eW7Znkjs76W9Zat6i1bpG+N8fHaq0Xpe8qfPuWvrOKhyTZN31B5f4kj5dS3tAZr/TBJBcvmle36PW3PUspGzbOXn19+v79H86LXP678xvlVen75STp++LQnp32TF9b7FZKGdQZFrBLkluiPZN01Z7PjbvbPc9vF+2Zrtrzr5110hkru036Ap3Pz3T1+Tm4/G3WhA8nubrW+ni8P5O8eHuWUtZPklLKckm+mL6T65LkZ0neXUpZqZSyZZKt03cymfZMV+35YvtZ0P/rn6WvHZOlvD27Uhf9WZnDk4xP8j/p+xP/kPSdeTkhfWO8/pBk5/lsd3Y6s1jUv529eWfn9qHG8hFJbkrfb1XfSudqgUvrrT/tmeQT6Ru/dEOS3yd5Y2M/ByS5vdNuX2gs3yp9H1p3pq83ZaVev+bFpT07638ufV+qNyU5Rnu+7PY8In0n7sy7H+3Zz/ZM39CKX6Vv/PFNSd7f2I/Pz/63566d9+Bt6ethHuL9uVDt+elO29yevmEqpbH+FzptdlsaM6Zoz67bc1L6TsZ9Mn090M/N/jHf/9fpG9c9Nn2/BF6RZO1ev+bF6eZS0wAA0OBKegAA0CAgAwBAg4AMAAANAjIAADQIyAAA0CAgAwBAg4AMAAAN/x8F0X/YOXGBWgAAAABJRU5ErkJggg==\n",
Eva Zangerle's avatar
Eva Zangerle committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "ax = mean_distribution.plot.hist(bins=30, figsize=(10, 8))\n",
    "ax.plot(confidence_interval, [55, 55], color=\"black\")\n",
    "for x in confidence_interval:\n",
    "    ax.plot([x, x], [0, 65], color=\"black\")\n",
    "    ax.text(\n",
    "        x,\n",
    "        70,\n",
    "        f\"{x:.0f}\",\n",
    "        horizontalalignment=\"center\",\n",
    "        verticalalignment=\"center\",\n",
    "    )\n",
    "ax.text(\n",
    "    sum(confidence_interval) / 2,\n",
    "    60,\n",
    "    \"90% interval\",\n",
    "    horizontalalignment=\"center\",\n",
    "    verticalalignment=\"center\",\n",
    ")\n",
    "\n",
    "meanIncome = mean_distribution.mean()\n",
    "ax.plot([meanIncome, meanIncome], [0, 50], color=\"black\", linestyle=\"--\")\n",
    "ax.text(\n",
    "    meanIncome,\n",
    "    10,\n",
    "    f\"Mean: {meanIncome:.0f}\",\n",
    "    bbox=dict(facecolor=\"white\", edgecolor=\"white\", alpha=0.5),\n",
    "    horizontalalignment=\"center\",\n",
    "    verticalalignment=\"center\",\n",
    ")\n",
    "ax.set_ylim(0, 80)\n",
    "ax.set_ylabel(\"Counts\")\n",
    "\n",
    "plt.tight_layout();"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
Eva Zangerle's avatar
Eva Zangerle committed
554
   "display_name": "dataeng_kernel",
Eva Zangerle's avatar
Eva Zangerle committed
555
   "language": "python",
Eva Zangerle's avatar
Eva Zangerle committed
556
   "name": "dataeng_kernel"
Eva Zangerle's avatar
Eva Zangerle committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}