dea_0_python.ipynb 1.45 KB
Newer Older
Eva Zangerle's avatar
Eva Zangerle committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "500bd02c-eee8-45e6-a301-3482638767de",
   "metadata": {},
   "source": [
    "# Data Engineering and Analtics\n",
    "Master Software Engineering\n",
    "Eva Zangerle\n",
    "\n",
    "## General Notes\n",
    "* Code is partly taken from further sources, such as books.\n",
    "* Sources are annotated as follows:\n",
    "    * (CleaningData): Cleaning Data for Effective Data Science: Doing the other 80% of the work with Python, R, and command-line tools; David Mertz; Packt Publishing, 2021; [Github repo](https://github.com/PacktPublishing/Cleaning-Data-for-Effective-Data-Science/)\n",
    "* Unless marked otherwise, code was written by Eva Zangerle\n",
    "\n",
    "## Useful python stuff\n",
    "* Startup files: https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#startup-files"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0abb7b0a-84c9-4601-9ded-8130f5b38639",
   "metadata": {},
   "outputs": [],
   "source": [
    "*"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}