B universitat
Innsbruck

PS 703301 — WS 2021/22
Current Topics in Computer Science

Final Report

Shaping Knowledge Graphs

Philipp Gritsch
Jamie Hochrainer
Kristina Magnussen
Danielle McKenney
Valerian Wintner

supervised by
M.Sc. Elwin Huaman

Contents

1. Introduction
2. Related Work

3. Approach
3.1. Technology Stack e
3.2. Generating Constraints L L
3.2.1. Integrating RDF2Graph with our framework
3.3. Validating Constraints L
3.4. Front-end e

4. Results
4.1. Future work L e e e e e

5. Evaluation

6. Conclusion

References

A. Contribution Statements

B. Appendix

I added a comment colour for everyone. ;jComment colour Jamie; jComment colour Danielles
iComment colour Philipps; jComment colour Valerian; jComment colour Kristinag

1. Introduction

We used CommonCrawl datasets as the base for the knowledge graph which we wanted to assess. The
data contained in those datasets is often inconsistent and might contain errors. In order to work with this
data properly, it is necessary to shape the knowledge graph in which this data is contained. This shaping
is done by inferring constraints over the data and validating it based on this constraints. Validating a
graph against constraints gives important insight into the structure of the data. For instance, when all
nodes of a type conform to constraints, then it may be useful to define these as required attributes for
all future nodes to ensure uniformity in the data. Non conforming nodes may also deliver important
insight into where information is missing. For example, if 9% of nodes of a given type conform to some
constraints, it may be worthwhile to investigate the remaining 1% to see if they are missing necessary
information or otherwise corrupt.

2. Related Work

3. Approach

Our framework offers a way to evaluate a knowledge graph in an automated way. For this, we used
knowledge graphs from the CommonCrawl datasets as a basis. The knowledge graphs are imported as
a static file. After this, our framework infers constraints over this data set (see Section 3.2). These are
validated automatically in the last step, see Section 3.3. The user can interact with this framework over
the front-end, see Section 3.4. These different steps were implemented and tested separately. Once this
was done, we consolidated them. The structure of our project can be seen in Fig. 1.

3.1. Technology Stack

The framework was implemented in Java. We used Maven as a project management tool. We also used
Jena, which offers an RDF API as well as support for SPARQL queries and the ShEz language. The
front-end was implemented using Vue3[1] as a front-end framework and PrimeVue as a library for the
different components. For the deployment of our application we use single virtual machine. Access to
the front-end is done via a single Apache server. The front-end accesses the back-end via an internal
REST-API

3.2. Generating Constraints

For the generation of constraints, we used the tool RDF2Graph [2] and adapted it for our purposes. As
input, RDF2Graph takes a knowledge graph from CommonCrawl. The properties of the graph are read
out with several SPARQL queries. These properties are saved in a new RDF graph. As output, we
receive a graph containing constraints for the initial input data. We use RDF2Graph queries to extract
the constraints in ShEz syntax.

=]

Graph

id: Integer

= Constraints

id: Integer

L shexConstraints: String
rdfType: String

1 generated: Boolean

A

limit: Integer
shapeMap: String

model: Model (graph contents)

A graphld: Integer
1

A
1

= Validation

id: Integer
graphld: Integer

constraintsld: Integer

totalNodesChecked

nonConformantCount: Integer

conformantCount: Integer

report: ShexValidationRecord

Figure 1: UML diagram of the framework structure

Missing

figure

3.2.1. Integrating RDF2Graph with our framework

We implemented the following steps in order to integrate RDF2Graph into our project. We added
RDF2graph to our framework so that they could be compiled together. In addition, we changed some of
the initial parameters of the RDF2Graph, since it originally was intended as a stand-alone application.
As we are handling Models in our software, we changed the input to RDF2Graph to a Model. In our

application, RDF2Graph does not use any other storage apart from the Model data structure. Previously,
such a Model needed to be created by RDF2Graph, now it is provided by our framework. We did this so
we could have full control over the files handled by RDF2Graph. RDF2Graph allows for multithreaded
execution, which requires a thread pool. This thread pool was initially created by RDF2Graph. In our
framework, it is provided by our application. In addition, resources which are used by RDF2Graph had
to be provided in a different way so that they are still available when running from a server environment.
We also changed some of the queries. RDF2Graph supports multiple output graphs, however, this did
not work . As we only work on one Model at a time, we only use one output graph.

3.3. Validating Constraints

Given a RDF graph and a set of constraints, the validation consists of verifying that every node in the
graph fulfils the requirements given in the constraints. A graph consists of several different types. Each
of those types must conform to its definition outlined in the constraints. The results of the validation is
be a boolean flag for every single node in the graph, indicating whether or not it conforms to its type’s
constraints. In case of nonconformity, a reason will be given.

In our code, this is implemented in the following way. As input, we receive a RDF subgraph as well as
a set of constraints. We use this to generate a shape map, which contains all of the types which need to
be validated. For the actual validation, the ShEzValidator provided by the Jena library was used. The
validator requires a set of constraints defined in valid ShEz syntax and a shape map. The shape map
describes which types of nodes need to be validated against which ShEz constraint definitions.

Missing

figure

The class ShexValidationRecord stores the result of the validation for every single node of the graph. Not
only is the individual result of every node checked against its relevant constraints, but we also calculate
the percentage of nodes that conform to their constraints.

3.4. Front-end

We implemented a front-end where the user can choose a knowledge graph as well as a type of knowledge
graph. In addition, the user can also set a limit. As output, ShEz constraints as well as a validation

of those constraints are given. The constraints can be edited by the user and those edited constraints
can be revalidated. If a node is deemed invalid, a reason is given, e.g. "Cardinality violation (min=1):
0” The user can download the subset of the graph which was validated. The interaction between user,
front-end and server can also be seen in Fig. 2.

Missing
figure

I I
I I
Class Schema is ProjectMember ! 1 i i
— —» | Session is created
I,

|

1

1

on Graph A {

| 1 o i

I T ‘Graph': 'A'

1 1)

! . - |

i<_ — — ~displays waiting screen — — — T

1 1

1 1

| |

| |

1 1

1 1

1 ~---- {constraints} + sessionID — — — — — A

| | |

(& — — — displays constraints— — — — |

1 1 1
Loop | ol |

T i} 1
can be repeated as 1 1 1
often as the user wishes | | |

| o |

T i} 1

1 1 |

| [—check {constraints} on graph fetched for sessioniD-Jy

| | |

1 ! !

H C--———- {checkResult}— — — — — — — B

& — — —display {checkResult} — — — o |

1 1 1

1 1 1

1 1 — cecioni

| | ession is destroyed

| 1

Figure 2: Sequence diagram showing the interaction between web application, user and server

4. Results

Our framework automatically infers constraints and validates the given data based on those constraints.
This can be done on two different CommonCrawl datasets. The user can choose one of those datasets
and a limit using the front-end. User can also edit constraints.

Missing

figure

4.1. Future work

Our application currently only handles two different datasets. For future work, this could be expanded so
that the framework could handle more and bigger datasets. Currently, the size of the datasets that can
be handled is limited by the RAM on the virtual machine. One possible solution for this could be to only
work on parts of the graph. One problem we encountered when handling datasets from CommonCrawl
was the quality of these datasets. Many datasets include non-unicode characters, which are replaced by
Jena with unicode characters. This takes a lot of computing time. In addition, many files include invalid

RDF syntax or are otherwise damaged. This means that in order to handle additional datasets, some
way of processing these datasets would have to be implemented. Processing could include filtering for
broken files and invalid syntax and fixing this before handling the dataset in the framework. In addition,
more possibilities for user interaction could be added. For instance, a feature could be added where a
user can upload their own dataset and have it validated.

5. Evaluation

6. Conclusion

References

[1] Vue.js, documentation. https://v3.vuejs.org/.
[2] J.van Dam. Rdf2graph. https://github.com/jessevdam/RDF2Graph/, 2022. Accessed: 2022-01-16.

A. Contribution Statements

Please write down a short contribution statement for each member of your group. You may evaluate
the contribution along the three common categories: i) conception (i.e., problem framing, ideation,
validation, and method selection), ii) operational work (e.g., setting up your tech stack, algorithm
implementation, data analysis, and interpretation), and iii) writing & reporting (i.e., report drafting,
literature review, revision of comments, presentation preparations, etc.).

B. Appendix

You may use appendices to include any auxiliary results you would like to share, however cannot insert
in the main text due to the page limit.

