
PS 703301 – WS 2021/22
Current Topics in Computer Science

Final Report

Shaping Knowledge Graphs

Philipp Gritsch
Jamie Hochrainer

Kristina Magnussen
Danielle McKenney
Valerian Wintner

supervised by
M.Sc. Elwin Huaman

Contents

1. Introduction 3

2. Related Work 3

3. Approach 3
3.1. Technology Stack . 3
3.2. Generating Constraints . 4

3.2.1. Integrating RDF2Graph with our framework . 4
3.3. Validating Constraints . 5
3.4. Front-end . 5

4. Results 6
4.1. Future work . 7

5. Evaluation 7
5.1. Methodology . 7
5.2. Runtime . 7
5.3. Correctness . 8

5.3.1. ShEx Generation . 8
5.3.2. ShEx Validation . 9

6. Conclusion 9

References 10

A. Contribution Statements 10

B. Appendix 10
B.1. Code listings and additional data . 10

2

remove this
partI added a comment colour for everyone. ¡Comment colour Jamie¿ ¡Comment colour Danielle¿

¡Comment colour Philipp¿ ¡Comment colour Valerian¿ ¡Comment colour Kristina¿

1. Introduction
add introduc-
tion to KGsWe used CommonCrawl ¡maybe too specific as first sentence in introduction¿ datasets as the

base for the knowledge graph which we wanted to assess. The data contained in those datasets is often
inconsistent and might contain errors. In order to work with this data properly, it is necessary to shape
the knowledge graph in which this data is contained. This shaping is done by inferring constraints over
the data and validating it based on this constraints ¡these constraints?¿. Validating a graph against
constraints gives important insight into the structure of the data. For instance, when all nodes of a type
conform to constraints, then it may be useful to define these as required attributes for all future nodes
to ensure uniformity in the data. Non conforming nodes may also deliver important insight into where
information is missing. For example, if 99% of nodes of a given type conform to some constraints, it may
be worthwhile to investigate the remaining 1% to see if they are missing necessary information or ¡are¿
otherwise corrupt.
¡Introduction should also contain what we cover in the report (not only motivation) with
refering to Sections to give a short overview.¿

2. Related Work
Add thesis
Werkmeister +
RDF2Graph,
also add an-
other work,
maybe from
sources in the-
sis, done by
Philipp

3. Approach

Our framework ¡do you mean web application? I thought framework is sth different¿ offers a
way to evaluate a knowledge graph in an automated way. For this, we used knowledge graphs from the
CommonCrawl datasets as a basis. The knowledge graphs are imported as a static file. After this, our
framework infers constraints over this data set (see Section 3.2). These are validated automatically in the
last step, see Section 3.3. The user can interact with this framework over the front-end, see Section 3.4.
These different steps were implemented and tested separately. Once this was done, we consolidated them.
The structure of our project can be seen in Fig. 1. update figure

refer to the
readme here?
Or should this
happen some-
where else?

add reference
to our github
repo!

3.1. Technology Stack

¡In general, it would be nice to have an introductory sentence at the beginning of each
section¿ The framework was implemented in Java. We used Maven as a project management tool. We
also used Jena, which offers an RDF API as well as support for ¡supports¿ SPARQL queries and the
ShEx language. The front-end was implemented using Vue3 [1] as a front-end framework and PrimeVue
as a library for the different ¡UI¿ components. For the deployment of our application we use¡d a¿ single
virtual machine. Access to the front-end is done via a single Apache server. The front-end accesses the
back-end via an internal REST-API.

¡Missing: Subsection about generating subgraph (with limit), starting from a certain type
of node.¿

3

Figure 1: UML diagram of the framework structure

3.2. Generating Constraints

For the generation of constraints, we used the tool RDF2Graph [3] ¡(this is the old version, we
use the fork)¿ and adapted it for our purposes. As input, RDF2Graph takes a knowledge graph from
CommonCrawl. The properties of the graph are read out with several SPARQL queries. These properties
are saved in a new RDF graph. As output, we receive a graph containing constraints for the initial input
data. We use RDF2Graph queries to extract the constraints in ShEx syntax. ¡RDF2Graph offers a
tool to export the constraints to ShEx syntax.¿

add query to graph (chosen by Philipp), e.g. multiplicy of argument etc.

Missing
figure

3.2.1. Integrating RDF2Graph with our framework

We implemented the following steps in order to integrate RDF2Graph into our project. We added
RDF2graph to our framework so that they could be compiled together¡, and in the process minimally
updated it to be compatible with our version of Java and Jena¿. In addition, we changed some
of the initial parameters of the RDF2Graph, since it originally was intended as a stand-alone application.
As we are handling Models in our software, we changed the input to RDF2Graph to a Model. In our Add expla-

nation for
Model? Maybe
in glossary?

application, RDF2Graph does not use any other storage apart from the Model data structure. Previously,
such a Model needed to be created by RDF2Graph, now it is provided by our framework. We did this so

4

we could have full control over the files handled by RDF2Graph. RDF2Graph allows for multithreaded
execution, which requires a thread pool. This thread pool was initially created by RDF2Graph. In our
framework, it is provided by our application. In addition, resources which are used by RDF2Graph had
to be provided in a different way so that they are still available when running from a server environment.
We also changed some of the queries. RDF2Graph supports multiple output graphs, however, this did
not work . As we only work on one Model at a time, we only use one output graph. should we ex-

plain this in
more detail?

Add explana-
tion of limit to
this section?

3.3. Validating Constraints

Given a RDF graph and a set of constraints, the validation consists of verifying that every node in the
graph fulfils the requirements given in the constraints. A graph consists of several different types. Each
of those types must conform to its definition outlined in the constraints. The results of the validation
is ¡be¿ a boolean flag for every single node in the graph, indicating whether or not it conforms to its
type’s constraints. In case of nonconformity, a reason will be given.

In our code, this is implemented in the following way. As input, we receive a RDF subgraph as well as
a set of constraints. We use this to generate a shape map, which contains all of the types which need to
be validated. For the actual validation, the ShExValidator provided by the Jena library was used. The add reference

to Jena library
here?

validator requires a set of constraints defined in valid ShEx syntax and a shape map. The shape map
describes which types of nodes need to be validated against which ShEx constraint definitions.

add picture/code snipped of shapeMap

Missing
figure

The class ShexValidationRecord stores the result of the validation for every single node of the graph. Not
only is the individual result of every node checked against its relevant constraints, but we also calculate
the percentage of nodes that conform to their constraints.

3.4. Front-end

We implemented a front-end where the user can choose a knowledge graph as well as a type of knowledge
graph ¡and its type. (because the type depends on the selected KG)¿. In addition, the user check whether

this is what
we are doing
in the finished
version

can also set a limit. As output, ShEx constraints as well as a validation of those constraints are given.

explain this
in more de-
tail, maybe
also put the
explanation in
query

The constraints can be edited by the user and those edited constraints can be revalidated. If a node is
deemed invalid, a reason is given, e.g. ”Cardinality violation (min=1): 0”¡.¿ The user can download the
subset of the graph which was validated. The interaction between user, front-end and server can also be
seen in Fig. 2.

explain how
different limit
influences data
output

5

add screenshot of the front-end

Missing
figure

update and
scale sequence
diagram and
refer to it

:user:user :Webapp:Webapp :ServerSession:ServerSession

Class Schema is ProjectMember
on Graph A

 'Dataset': 'RiverbodyOfWater'
 'RDFType': 'Canal'

constraints + sessionID

displays constraints

displays waiting screen

adapts constraints

validate constraints

check constraints on graph fetched for sessionID

{checkResult}

display {checkResult}

Loop

can be repeated as
often as the user wishes

Loop

can be repeated as
often as the user wishes

<<create>>

optopt Download graph

Download graph

graph as file
graph as file

Figure 2: Sequence diagram showing the interaction between web application, user and server

4. Results

Our framework automatically infers constraints and validates the given data based on those constraints.
This can be done on two different CommonCrawl datasets. The user can choose one of those datasets
and a limit using the front-end. User can also edit constraints. explain this

limit in more
depth, maybe
in front-end?

Maybe add small figure that shows workflow of project here? Something
similar like we did in presentation but more professional?

Missing
figure

describe re-
sults of bench-
mark tests
here

6

4.1. Future work Possible future
work could
be: more data
sets, more pos-
sibilities for
user inputs

Our application currently only handles two different datasets. For future work, this could be expanded so
that the framework could handle more and bigger datasets. Currently, the size of the datasets that can
be handled is limited by the RAM on the virtual machine. One possible solution for this could be to only
work on parts of the graph. One problem we encountered when handling datasets from CommonCrawl
was the quality of these datasets. Many datasets include non-unicode characters, which are replaced by
Jena with unicode characters. This takes a lot of computing time. In addition, many files include invalid
RDF syntax or are otherwise damaged. This means that in order to handle additional datasets, some
way of processing these datasets would have to be implemented. Processing could include filtering for
broken files and invalid syntax and fixing this before handling the dataset in the framework. In addition, Should we

add proper
SPARQL end-
points here?
Might not be
possible?

more possibilities for user interaction could be added. For instance, a feature could be added where a
user can upload their own dataset and have it validated.

5. Evaluation

¡Move the evaluation section before the results and future work.¿ add bench-
marks here

check what El-
win said con-
cerning Evalu-
ation on meet-
ing 20.01.2022

5.1. Methodology

¡i labeled all the included graphics with h!, when we have finished the report we might want
to make it so, that one image is on the top and one on the bottom, if 2 pages are on
the same page, for example¿ For taking the measurements the application was started locally on
our hardware, to minimize side-effects of other applications running on the virtual machine where the
live-instance is deployed. The JVM was additionally setup to use up to 16 GB of main memory for its
heap to allow parallel queries without compromising the runtime of the executions, arising from extensive
swap usage.

5.2. Runtime

Figures 3 and 4 show our measurements we obtained by changing the LIMIT input parameter. This
parameter limits the size of the start-node subset, from which connected nodes are queried. All the
measurements are shown in tables 1 and 2.

The results shown in figure 3 were to be expected. First of all, the runtime of constructing the desired
subset of the graph is considerably larger than the time needed to create the ShEx constraints, or to
validate the constraints on the graph. Secondly, the runtime of constructing the subgraph scales with
the LIMIT. This becomes especially evident in figures 3a and 3c.

To understand the behaviour shown in figure 3b, we want to look at figure 4, which shows the same
runtimes, but grouped by the number of triples in the subgraph, on which the constraints are created.
Unlike in figures 4a and 4c the maximum number of triples (shown in the x-coordinate in figure 4b), is
1769. This is also the amount of triples contained in the subgraph that we get without providing any
limit. Therefore, providing a limit larger than 200 won’t enrich the constructed graph, keeping the time
almost constant in regards to the LIMIT parameter.

Figure 5 shows the runtime without limiting the construction of the subgraph. Note the much larger
runtime needed for querying the graph, despite resulting in the same amount of triples when providing
a large enough LIMIT.

7

Execution Type Validation Time ShEx Creation Time Subgraph Query Time

0

3000

6000

9000

12000

0 2000 4000 6000
Subset size of starting nodes

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

(a) RDFType = Canal

0

2000

4000

200 400 600 800
Subset size of starting nodes

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

(b) RDFType = RiverBodyOfWater

0

2000

4000

6000

200 400 600 800
Subset size of starting nodes

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

(c) RDFType = Service

Figure 3: Execution times per RDFType, per size of start-node subset on RiverBodyOfWater dataset

Execution Type Validation Time ShEx Creation Time Subgraph Query Time

0

3000

6000

9000

12000

0 5000 10000 15000
Number of triples

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

(a) RDFType = Canal

0

2000

4000

500 1000 1500
Number of triples

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

(b) RDFType = RiverBodyOfWater

0

2000

4000

6000

1000 2000 3000 4000 5000
Number of triples

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

(c) RDFType = Service

Figure 4: Execution times per RDFType, per number of triples on RiverBodyOfWater dataset

5.3. Correctness

5.3.1. ShEx Generation

We thought Shexer, which was already mentioned in section 2, was a good fit for cross validating our
ShEx-generation. However, due to our limited knowledge of operating this tool, we did not manage to
generate proper constraints for our RiverBodyOfWater-dataset. Our attempt at using this tool is shown
in figure 7, which generated the trivial, non-restrictive constraints shown in figure 8.

Therefore, we checked the generated constraints manually for small subgraphs (see figures 9, 10 and 11)
and identified two issues with our tool.

Firstly, if the dataset consists of only standalone blank nodes, as seen in figure 6, then Rdf2Graph does
not infer any ShEx-constraints. This was the case for the generated subgraph using RiverBodyOfWater
with a LIMIT of 50, and the resulting ShEx can be seen at 10.

8

Execution Type Validation Time ShEx Creation Time Subgraph Query Time

0e+00

1e+05

2e+05

3e+05

4e+05

Canal GeoCoordinates RiverBodyOfWater Service
Dataset

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

Figure 5: Execution times per RDFType of the RiverBodyOfWater dataset (containing 49915 triples)

1 [a <https :// schema .org/Service > ;
2 <https :// schema .org/ serviceType >
3 " Marine Electrics "@en
4] .
5

6 [a <https :// schema .org/Service > ;
7 <https :// schema .org/ description >
8 "A list of locations with dry dock facilities on the Main Canal of the Trent &

Mersey Canal "@en ;
9 <https :// schema .org/ serviceType >

10 "Dry Dock"@en ;
11 <https :// schema .org/url > <https :// www. ukwaterwaysguide .co.uk/s/trent -mersey - canal /

main - canal /dry -dock >
12] .

Figure 6: Blank Nodes in Turtle File

Secondly, optional properties are not always inferred and therefore missing from the generated ShEx-
constraints. This also happens for unlimited subgraphs (see figures 12, 13 and 14), with the exception of
the RiverBodyOfWater-RDFtype, where it looks like the constraints are complete, however due to the
large graph manually checking for correctness is infeasible. We didn’t see a correlation between missing
constraint-properties and the shape of the graph.

5.3.2. ShEx Validation

The generated ShEx-constraints for small subgraphs (Canal with LIMIT 50, Service with LIMIT 50)
were cross validated using the online-tool RDFShape[2]. The validation result was the same as in our
tool.

6. Conclusion
Which chal-
lenges did we
face during
the imple-
mentation?
(Maybe depth
of SPARQL
query,
outdated
RDF2Graph?)

Did we achieve
what we
wanted to do?
How well and
reliably does
the framework
work?

9

References

[1] Vue.js, documentation. https://v3.vuejs.org/.

[2] J. E. L. Gayo. Rdfshape. https://rdfshape.herokuapp.com/validate, 2021. Accessed: 2022-01-
23.

[3] J. van Dam. Rdf2graph. https://github.com/jessevdam/RDF2Graph/, 2022. Accessed: 2022-01-16.

A. Contribution Statements

Please write down a short contribution statement for each member of your group. You may evaluate
the contribution along the three common categories: i) conception (i. e., problem framing, ideation,
validation, and method selection), ii) operational work (e. g., setting up your tech stack, algorithm
implementation, data analysis, and interpretation), and iii) writing & reporting (i. e., report drafting,
literature review, revision of comments, presentation preparations, etc.).

B. Appendix

You may use appendices to include any auxiliary results you would like to share, however cannot insert
in the main text due to the page limit.

B.1. Code listings and additional data

Rdftype Triples [tgraph] = ms [tshex] = ms [tvalidation] = ms
Canal 16961 360000 737 45
GeoCoordinates 204 468000 585 4
RiverBodyOfWater 1769 468000 613 15
Service 7334 462000 618 19

Table 1: Execution times per RDF-Type, queried on full graph of the RiverBodyOfWater dataset (con-
taining 49915 triples)

10

https://v3.vuejs.org/
https://rdfshape.herokuapp.com/validate
https://github.com/jessevdam/RDF2Graph/

1 from shexer . shaper import Shaper
2 from shexer . consts import NT , SHEXC
3

4 namespaces_dict = {
5 "http :// www.w3.org /2001/ XMLSchema #": "xsd",
6 "http :// www.w3.org /1999/02/22 - rdf -syntax -ns#": "rdf",
7 "http :// www.w3.org /2000/01/ rdf - schema #": "rdfs",
8 "http :// www.w3.org /2004/02/ skos/core#": "skos",
9 "http :// schema .org/": " schema "

10 }
11

12 input_file = "rbow.nt"
13

14 shaper = Shaper (
15 graph_file_input = input_file ,
16 all_classes_mode =True ,
17 input_format =NT ,
18 remove_empty_shapes =False ,
19 discard_useless_constraints_with_positive_closure =False ,
20 depth_for_building_subgraph =100 ,
21 inverse_paths =True ,
22 shapes_namespace ="http :// schema .org/",
23 all_instances_are_compliant_mode =False ,
24 namespaces_dict = namespaces_dict ,
25 instantiation_property ="http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type") # Default

rdf:type
26

27 output_file = " shexer_rbow .shex"
28

29 shaper . shex_graph (output_file = output_file ,
30 output_format =SHEXC ,
31 acceptance_threshold =.1)

Figure 7: Running shexer on the full graph

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX : <http :// schema .org/>
6

7 : PropertyValue
8 {
9 }

10

11

12 : RiverBodyOfWater
13 {
14 }
15

16

17 : Hotel
18 {
19 }
20

21 # ... many more empty terms

Figure 8: Shexer output

11

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX schema : <http :// schema .org/>
6

7 <https :// schema .org/Canal > {
8 <https :// schema .org/ description > rdf: langString ?;
9 <https :// schema .org/name > rdf: langString ?;

10 #< https :// schema .org/url > .? # <-- missing from generated ShEx.
11 }
12

13 <https :// schema .org/ RiverBodyOfWater > {
14 <https :// schema .org/ description > rdf: langString ;
15 <https :// schema .org/name > rdf: langString ;
16 <https :// schema .org/url > .
17 }
18

19 <https :// schema .org/Service > {
20 <https :// schema .org/ description > rdf: langString ?;
21 <https :// schema .org/ serviceType > rdf: langString ;
22 <https :// schema .org/url > .?
23 }

Figure 9: Generated ShEx-constraints of Canal with LIMIT 50

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX schema : <http :// schema .org/>

Figure 10: Generated ShEx-constraints of RiverBodyOfWater with LIMIT 50

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX schema : <http :// schema .org/>
6

7 <https :// schema .org/Canal > {
8 <https :// schema .org/ description > rdf: langString ?;
9 <https :// schema .org/name > rdf: langString ?;

10 #< https :// schema .org/url > .? # <-- missing from generated ShEx.
11 }
12

13 <https :// schema .org/ RiverBodyOfWater > {
14 <https :// schema .org/ description > rdf: langString ;
15 <https :// schema .org/name > rdf: langString ;
16 <https :// schema .org/url > .
17 }
18

19 <https :// schema .org/Service > {
20 <https :// schema .org/ description > rdf: langString ?;
21 <https :// schema .org/ serviceType > rdf: langString ;
22 #< https :// schema .org/url > .? # <-- missing from generated ShEx.
23 }

Figure 11: Generated ShEx-constraints of Service with LIMIT 50

12

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX schema : <http :// schema .org/>
6

7 <https :// schema .org/Canal > {
8 <https :// schema .org/address > rdf: langString ?; # <-- Only 1 standalone blank node with

this property
9 <https :// schema .org/ description > rdf: langString ?;

10 <https :// schema .org/name > rdf: langString ?;
11 #< https :// schema .org/url > .? # <-- missing from generated ShEx.
12 }
13

14 <https :// schema .org/ RiverBodyOfWater > {
15 <https :// schema .org/ description > rdf: langString ;
16 <https :// schema .org/name > rdf: langString ;
17 <https :// schema .org/url > .
18 }
19

20 <https :// schema .org/Service > {
21 <https :// schema .org/ description > rdf: langString ?;
22 <https :// schema .org/ serviceType > rdf: langString ;
23 #< https :// schema .org/url > .? # <-- missing from generated ShEx.
24 }

Figure 12: Generated ShEx-constraints of Canal without a LIMIT

Rdftype Limit Triples [tgraph] = ms [tshex] = ms [tvalidation] = ms
Canal 50 226 2420 923 44
Canal 100 328 2260 709 13
Canal 200 765 1740 637 8
Canal 400 1588 2020 559 9
Canal 800 3176 3270 661 8
Canal 1600 6817 5030 654 17
Canal 3200 13504 9100 736 33
Canal 6400 16961 10790 665 25
RiverBodyOfWater 50 192 2680 615 5
RiverBodyOfWater 75 291 2490 586 4
RiverBodyOfWater 100 1187 2700 624 7
RiverBodyOfWater 200 1769 4890 643 17
RiverBodyOfWater 400 1769 4840 641 8
RiverBodyOfWater 800 1769 4980 619 18
Service 50 615 1640 602 7
Service 100 1022 1790 562 6
Service 200 1852 2300 577 9
Service 400 3041 2880 601 6
Service 850 5050 5856 606 12

Table 2: Execution times per RDF-Type, limited size of start-node subset (using the RiverBodyOfWater
dataset)

13

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX schema : <http :// schema .org/>
6

7 <https :// schema .org/ AdministrativeArea > {
8 <https :// schema .org/name > rdf: langString ;
9 <https :// schema .org/url > .

10 }
11

12 <https :// schema .org/Canal > {
13 <https :// schema .org/ description > rdf: langString ?;
14 <https :// schema .org/name > rdf: langString ?;
15 <https :// schema .org/url > .?
16 }
17

18 <https :// schema .org/ EducationalOrganization > {
19 <https :// schema .org/name > rdf: langString ;
20 <https :// schema .org/url > .
21 }
22

23 <https :// schema .org/ GeoCoordinates > {
24 <https :// schema .org/elevation > rdf: langString ?;
25 <https :// schema .org/latitude > rdf: langString ?;
26 <https :// schema .org/longitude > rdf: langString ?
27 }
28

29 <https :// schema .org/Map > {
30 <https :// schema .org/sameAs > .
31 }
32

33 <https :// schema .org/Place > {
34 (
35 <https :// schema .org/ containsPlace > @< https :// schema .org/ AdministrativeArea >* |
36 <https :// schema .org/ containsPlace > @< https :// schema .org/ EducationalOrganization >?
37);
38 <https :// schema .org/name > rdf: langString ?;
39 (
40 <https :// schema .org/url > .? |
41 <https :// schema .org/url > rdf: langString ?
42)
43 }
44

45 <https :// schema .org/ RiverBodyOfWater > {
46 <https :// schema .org/address > rdf: langString ?;
47 <https :// schema .org/ alternateName > rdf: langString *;
48 <https :// schema .org/ containedInPlace > @< https :// schema .org/Place >*;
49 <https :// schema .org/ description > rdf: langString *;
50 <https :// schema .org/geo > @< https :// schema .org/ GeoCoordinates >*;
51 <https :// schema .org/hasMap > @< https :// schema .org/Map >*;
52 <https :// schema .org/image > rdf: langString *;
53 <https :// schema .org/name > rdf: langString +;
54 <https :// schema .org/sameAs > .*
55 }
56

57 <https :// schema .org/Service > {
58 <https :// schema .org/ description > rdf: langString ?;
59 <https :// schema .org/ serviceType > rdf: langString ;
60 <https :// schema .org/url > .?
61 }

Figure 13: Generated ShEx-constraints of RiverBodyOfWater without a LIMIT

14

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX schema : <http :// schema .org/>
6

7 <https :// schema .org/Canal > {
8 <https :// schema .org/ description > rdf: langString ?;
9 <https :// schema .org/name > rdf: langString ?;

10 #< https :// schema .org/url > .? <-- Missing from generated ShEx
11 }
12

13 <https :// schema .org/ RiverBodyOfWater > {
14 <https :// schema .org/ description > rdf: langString ;
15 <https :// schema .org/name > rdf: langString ;
16 <https :// schema .org/url > .
17 }
18

19 <https :// schema .org/Service > {
20 <https :// schema .org/ description > rdf: langString ?;
21 <https :// schema .org/ serviceType > rdf: langString ;
22 #< https :// schema .org/url > .? # <-- Missing from generated ShEx
23 }

Figure 14: Generated ShEx-constraints of Service without a LIMIT

15

	Introduction
	Related Work
	Approach
	Technology Stack
	Generating Constraints
	Integrating RDF2Graph with our framework

	Validating Constraints
	Front-end

	Results
	Future work

	Evaluation
	Methodology
	Runtime
	Correctness
	ShEx Generation
	ShEx Validation

	Conclusion
	References
	Contribution Statements
	Appendix
	Code listings and additional data

