B universitat
Innsbruck

PS 703301 — WS 2021/22
Current Topics in Computer Science

Final Report

Shaping Knowledge Graphs

Philipp Gritsch
Jamie Hochrainer
Kristina Magnussen
Danielle McKenney
Valerian Wintner

supervised by
M.Sc. Elwin Huaman

Contents

1. Introduction
2. Related Work

3. Approach
3.1. Technology Stack e
3.2. Generating Constraints L L
3.2.1. Integrating RDF2Graph with our framework
3.3. Validating Constraints L
3.4. Front-end e

4. Results
4.1. Future work L e e e e e

5. Evaluation
5.1. Methodology e
5.2. Runtime
5.3, COorrectness e e
5.4. ShEx Validation e

6. Conclusion
References
A. Contribution Statements

B. Appendix

I added a comment colour for everyone. ;jComment colour Jamie; jComment colour Danielles
iComment colour Philipps; jComment colour Valerian; jComment colour Kristinag

1. Introduction

We used CommonCrawl datasets as the base for the knowledge graph which we wanted to assess. The
data contained in those datasets is often inconsistent and might contain errors. In order to work with this
data properly, it is necessary to shape the knowledge graph in which this data is contained. This shaping
is done by inferring constraints over the data and validating it based on this constraints. Validating a
graph against constraints gives important insight into the structure of the data. For instance, when all
nodes of a type conform to constraints, then it may be useful to define these as required attributes for
all future nodes to ensure uniformity in the data. Non conforming nodes may also deliver important
insight into where information is missing. For example, if 9% of nodes of a given type conform to some
constraints, it may be worthwhile to investigate the remaining 1% to see if they are missing necessary
information or otherwise corrupt.

2. Related Work

3. Approach

Our framework offers a way to evaluate a knowledge graph in an automated way. For this, we used
knowledge graphs from the CommonCrawl datasets as a basis. The knowledge graphs are imported as
a static file. After this, our framework infers constraints over this data set (see Section 3.2). These are
validated automatically in the last step, see Section 3.3. The user can interact with this framework over
the front-end, see Section 3.4. These different steps were implemented and tested separately. Once this
was done, we consolidated them. The structure of our project can be seen in Fig. 1.

3.1. Technology Stack

The framework was implemented in Java. We used Maven as a project management tool. We also used
Jena, which offers an RDF API as well as support for SPARQL queries and the ShEz language. The
front-end was implemented using Vue3[1] as a front-end framework and PrimeVue as a library for the
different components. For the deployment of our application we use single virtual machine. Access to
the front-end is done via a single Apache server. The front-end accesses the back-end via an internal
REST-API

3.2. Generating Constraints

For the generation of constraints, we used the tool RDF2Graph [2] and adapted it for our purposes. As
input, RDF2Graph takes a knowledge graph from CommonCrawl. The properties of the graph are read
out with several SPARQL queries. These properties are saved in a new RDF graph. As output, we
receive a graph containing constraints for the initial input data. We use RDF2Graph queries to extract
the constraints in ShEz syntax.

=]

Graph

id: Integer

= Constraints

id: Integer

L shexConstraints: String
rdfType: String

1 generated: Boolean

A

limit: Integer
shapeMap: String

model: Model (graph contents)

A graphld: Integer
1

A
1

= Validation

id: Integer
graphld: Integer

constraintsld: Integer

totalNodesChecked

nonConformantCount: Integer

conformantCount: Integer

report: ShexValidationRecord

Figure 1: UML diagram of the framework structure

Missing

figure

3.2.1. Integrating RDF2Graph with our framework

We implemented the following steps in order to integrate RDF2Graph into our project. We added
RDF2graph to our framework so that they could be compiled together. In addition, we changed some of
the initial parameters of the RDF2Graph, since it originally was intended as a stand-alone application.
As we are handling Models in our software, we changed the input to RDF2Graph to a Model. In our

application, RDF2Graph does not use any other storage apart from the Model data structure. Previously,
such a Model needed to be created by RDF2Graph, now it is provided by our framework. We did this so
we could have full control over the files handled by RDF2Graph. RDF2Graph allows for multithreaded
execution, which requires a thread pool. This thread pool was initially created by RDF2Graph. In our
framework, it is provided by our application. In addition, resources which are used by RDF2Graph had
to be provided in a different way so that they are still available when running from a server environment.
We also changed some of the queries. RDF2Graph supports multiple output graphs, however, this did
not work . As we only work on one Model at a time, we only use one output graph.

3.3. Validating Constraints

Given a RDF graph and a set of constraints, the validation consists of verifying that every node in the
graph fulfils the requirements given in the constraints. A graph consists of several different types. Each
of those types must conform to its definition outlined in the constraints. The results of the validation is
be a boolean flag for every single node in the graph, indicating whether or not it conforms to its type’s
constraints. In case of nonconformity, a reason will be given.

In our code, this is implemented in the following way. As input, we receive a RDF subgraph as well as
a set of constraints. We use this to generate a shape map, which contains all of the types which need to
be validated. For the actual validation, the ShEzValidator provided by the Jena library was used. The
validator requires a set of constraints defined in valid ShEz syntax and a shape map. The shape map
describes which types of nodes need to be validated against which ShEz constraint definitions.

Missing

figure

The class ShexValidationRecord stores the result of the validation for every single node of the graph. Not
only is the individual result of every node checked against its relevant constraints, but we also calculate
the percentage of nodes that conform to their constraints.

3.4. Front-end

We implemented a front-end where the user can choose a knowledge graph as well as a type of knowledge
graph. In addition, the user can also set a limit. As output, ShEz constraints as well as a validation

of those constraints are given. The constraints can be edited by the user and those edited constraints
can be revalidated. If a node is deemed invalid, a reason is given, e.g. "Cardinality violation (min=1):
0” The user can download the subset of the graph which was validated. The interaction between user,
front-end and server can also be seen in Fig. 2.

Missing
figure

I I
I I
Class Schema is ProjectMember ! 1 i i
— —» | Session is created
I,

|

1

1

on Graph A {

| 1 o i

I T ‘Graph': 'A'

1 1)

! . - |

i<_ — — ~displays waiting screen — — — T

1 1

1 1

| |

| |

1 1

1 1

1 ~---- {constraints} + sessionID — — — — — A

| | |

(& — — — displays constraints— — — — |

1 1 1
Loop | ol |

T i} 1
can be repeated as 1 1 1
often as the user wishes | | |

| o |

T i} 1

1 1 |

| [—check {constraints} on graph fetched for sessioniD-Jy

| | |

1 ! !

H C--———- {checkResult}— — — — — — — B

& — — —display {checkResult} — — — o |

1 1 1

1 1 1

1 1 — cecioni

| | ession is destroyed

| 1

Figure 2: Sequence diagram showing the interaction between web application, user and server

4. Results

Our framework automatically infers constraints and validates the given data based on those constraints.
This can be done on two different CommonCrawl datasets. The user can choose one of those datasets
and a limit using the front-end. User can also edit constraints.

Missing

figure

4.1. Future work

Our application currently only handles two different datasets. For future work, this could be expanded so
that the framework could handle more and bigger datasets. Currently, the size of the datasets that can
be handled is limited by the RAM on the virtual machine. One possible solution for this could be to only
work on parts of the graph. One problem we encountered when handling datasets from CommonCrawl
was the quality of these datasets. Many datasets include non-unicode characters, which are replaced by
Jena with unicode characters. This takes a lot of computing time. In addition, many files include invalid

RDF syntax or are otherwise damaged. This means that in order to handle additional datasets, some
way of processing these datasets would have to be implemented. Processing could include filtering for
broken files and invalid syntax and fixing this before handling the dataset in the framework. In addition,
more possibilities for user interaction could be added. For instance, a feature could be added where a
user can upload their own dataset and have it validated.

5. Evaluation

5.1. Methodology

it labeled all the included graphics with h!, when we have finished the report we might want
to make it so, that one image is on the top and one on the bottom, if 2 pages are on
the same page, for example; For taking the measurements the application was started locally on
our hardware, to minimize side-effects of other applications running on the virtual machine where the
live-instance is deployed. The JVM was additionally setup to use up to 16 GB of main memory for its
heap to allow parallel queries without compromising the runtime of the executions, arising from extensive
swap usage.

5.2. Runtime
Figures 3 and 4 show our measurements we obtained by tuning the LIMIT input parameter, therefore

tuning the size of the start-node subset, from which connected nodes are fetched. All the measurements
are shown in tables 1 and 2.

Execution Type . Validation Time . ShEXx Creation Time . Subgraph Query Time

12000 -
6000 -

£ 9000- g g
1 11 4000 - 1
)) o) i,
£ £ £ 4000
F 6000- [[
c c c
k<] k=] k=]
é % 2000 § 2000
L 3000- L 153
i, i, u,
0- 0- 0-
0 2000 4000 6000 200 400 600 800 200 400 600 800
Subset size of starting node Subset size of starting node Subset size of starting node
(a) RDFType = Canal (b) RDFType = RiverbodyOfWater (c) RDFType = Service

Figure 3: Execution times per RDFType, per size of start-node subset on RiverbodyOfWater dataset

The results shown in 3 were to be expected. First of all, the runtime of fetching the wanted subset of
the graph is considerably larger than the time needed to create the ShFExz constraints, or to validate the
constraints on the graph. This can also be seen in figure 5, where we didn’t provide any limit. Sec-
ondly, the smaller the LIMIT the smaller the runtime. This becomes especially clear in figures 3a and 3c.

To understand the behaviour shown in figure 3b, we want to look at figure 4, which shows the same
runtimes, but grouped by the number of triples, contained in the fetched graph, on which the constraints

are created. Unlike in figures 4a and 4c, the maximum number of triples (shown in the x-coordinate in
figure 4b), is 1769. This is also the amount of triples contained in the graph, without providing any limit,
showing us that providing a larger limit than 200, won’t enrich the fetched graph, therefore keeping the
time almost constant, in regards to the LIMIT parameter.

Execution Type . Validation Time . ShEXx Creation Time . Subgraph Query Time

12000~

6000 -

£ 9000- 2 g
1 11 4000 - 1
)) @ i,
g £ g 4000
= 6000~ [[
< j = <
k<] k=] S
3 g 2000- 3 2000-
2 3000- 193 L
w, w, w,
0- 0- 0-
0 5000 10000 15000 500 1000 1500 1000 2000 3000 4000 5000
Number of triples Number of triples Number of triples
(a) RDFType = Canal (b) RDFType = RiverbodyOfWater (¢) RDFType = Service

Figure 4: Execution times per RDFType, per number of triples on RiverbodyOfWater dataset

Figure 5 shows the runtime without any provided limit to the query fetching the subgraph. Note the
much larger time, needed to make the query, despite having the same amount of triples when providing
a large enough LIMIT.

Execution Type . Validation Time . ShEx Creation Time . Subgraph Query Time

4e+05 -
m 3e+05-
O 2e+05-
1le+05-
0e+00 -

Canal GeoCoordinates RiverBodyOfWater Service
Dataset

n Tim

[Executi

Figure 5: Execution times per RDFType, queried on full graph of the RiverbodyOfWater dataset (con-
taining 49915 triples)

N

[a <https://schema.org/Service> ;
<https://schema.org/serviceType >
"Marine Electrics"@en

[a <https://schema.org/Service> ;
<https://schema.org/description>
"A list of locations with dry dock facilities on the Main Canal of the Trent &
Mersey Canal"@en ;
<https://schema.org/serviceType>
"Dry Dock"@en ;
<https://schema.org/url> <https://www.ukwaterwaysguide.co.uk/s/trent-mersey-canal/
main-canal/dry-dock>

Figure 6: Anonymous Nodes in Turtle File

5.3. Correctness

5.4. ShEx Validation

6. Conclusion

References

[1] Vue.js, documentation. https://v3.vuejs.org/.
[2] J. van Dam. Rdf2graph. https://github.com/jessevdam/RDF2Graph/, 2022. Accessed: 2022-01-16.

A. Contribution Statements

Please write down a short contribution statement for each member of your group. You may evaluate
the contribution along the three common categories: i) conception (i.e., problem framing, ideation,
validation, and method selection), ii) operational work (e.g., setting up your tech stack, algorithm
implementation, data analysis, and interpretation), and iii) writing & reporting (i.e., report drafting,
literature review, revision of comments, presentation preparations, etc.).

B. Appendix

You may use appendices to include any auxiliary results you would like to share, however cannot insert
in the main text due to the page limit.

Rdftype Triples [tgraph] = ms [tshea:] = ms [tvalidation] = msS
Canal 16961 360000 737 45
GeoCoordinates 204 468000 585 4
RiverBodyOfWater 1769 468000 613 15
Service 7334 462000 618 19

Table 1: Execution times per RDF-Type, queried on full graph of the RiverBodyOfWater dataset (con-
taining 49915 triples)

Rdftype Limit | Triples | [tgrapn] = mS | [tshea] = mS | [tvalidation] = ms
Canal 50 226 2420 923 44
Canal 100 328 2260 709 13
Canal 200 765 1740 637 8
Canal 400 1588 2020 559 9
Canal 800 3176 3270 661 8
Canal 1600 6817 5030 654 17
Canal 3200 | 13504 9100 736 33
Canal 6400 | 16961 10790 665 25
RiverBodyOfWater 50 192 2680 615 5
RiverBodyOfWater 75 291 2490 586 4
RiverBodyOfWater 100 1187 2700 624 7
RiverBodyOfWater 200 1769 4890 643 17
RiverBodyOfWater 400 1769 4840 641 8
RiverBodyOfWater 800 1769 4980 619 18
Service 50 615 1640 602 7
Service 100 1022 1790 562 6
Service 200 1852 2300 577 9
Service 400 3041 2880 601 6
Service 850 5050 5856 606 12

Table 2: Execution times per RDF-Type, limited size of start-node subset (using the RiverBodyOfWater
dataset)

10

