B universitat
Innsbruck

PS 703301 — WS 2021/22
Current Topics in Computer Science

Final Report

Shaping Knowledge Graphs

Philipp Gritsch
Jamie Hochrainer
Kristina Magnussen
Danielle McKenney
Valerian Wintner

supervised by
M.Sc. Elwin Huaman

Contents

(1. Introduction| 3
[2._Related Workl 3
3
B8.1. Technology Stack| 3
[3.2. Generating Constraints] L L o 4
[3-2.T. Tntegrating RDF2Graph with our framework] 5

8.3. Validating Constraints| L 5
B4 _TFronfendlo 5
4. Results| 6
5, Evaluation 7
BI_Future workl. e 7
b.2. Methodology|l e 7
B3 Runtime oo e e 7
4. Correctness| e 9
4.1, ShEx Generationl o oL e e e 9
B.4.2. Shbx Validation| 9

6. _Conclusion! 9
[References| 10
AT bution Stat ts 10
B. App d 10
IB.1. Code listings and additional data] oo 10

I added a comment colour for everyone. ;Comment colour Jamie; jComment colour Danielley
Y i & é
iComment colour Philipps; jComment colour Valerian; jComment colour Kristinag

1. Introduction

We used CommonCrawl jmaybe too specific as first sentence in introduction; jAgreed, I think
the introduction to KGs should come before this; datasets as the base for the knowledge graph
which we wanted to assess. The data contained in those datasets is often inconsistent and might contain
errors. In order to work with this data properly, it is necessary to shape the knowledge graph in which
this data is contained. This shaping is done by inferring constraints over the data and validating it based
on these constraints. Validating a graph against constraints gives important insight into the structure of
the data. For instance, when all nodes of a type conform to constraints, then it may be useful to define
these as required attributes for all future nodes to ensure uniformity in the data. Non conforming nodes
may also deliver important insight into where information is missing. For example, if 99% of nodes of a
given type conform to some constraints, it may be worthwhile to investigate the remaining 1% to see if
they are missing necessary information or are otherwise corrupt.

jIntroduction should also contain what we cover in the report (not only motivation) with
referring to Sections to give a short overview.; jAgreed. I wrote something like this (see
uncommented text on top of introduction), but I put it in approach. Should we put it back
into introduction? Or should we write something new for introduction and leave the other
text in approach?;

2. Related Work

3. Approach

Our framework jdo you mean web application? I thought framework is sth different; jI'm
talking about the whole application here, not only the web application. I usually used
framework when I was talking about our entire project, since this is also the term FElwin
used, but we could also maybe change this to application or program?; offers a way to evaluate
a knowledge graph in an automated way. For this, we used knowledge graphs from the CommonCrawl
datasets as a basis. The knowledge graphs are imported as a static file. After this, our framework infers
constraints over this data set (see Section . These are validated automatically in the last step, see
Section[3.3] The user can interact with this framework over the front-end, see Section[3.4] These different
steps were implemented and tested separately. Once this was done, we consolidated them. The structure
of our project can be seen in Fig.

3.1. Technology Stack

iIn general, it would be nice to have an introductory sentence at the beginning of each
section; The framework was implemented in Java. We used Maven as a project management tool. We
also used Jena, which offers an RDF API as well as support for SPARQL queries and the ShEx language.
The front-end was implemented using Vue3[I] as a front-end framework and PrimeVue as a library for
the different UI components. For the deployment of our application we used a single virtual machine.
Access to the front-end is done via a single Apache server. The front-end accesses the back-end via an
internal REST-APIL

= Graph

id: Integer
rdfType: String
limit: Integer

model: Model (graph contents)

= Constraints

A

A
1

id: Integer
shexConstraints: String
generated: Boolean
shapeMap: String

graphld: Integer

=]

Validation

A
1

id: Integer
graphld: Integer

constraintsld: Integer

totalNodesChecked

nonConformantCount: Integer

conformantCount: Integer

report: ShexValidationRecord

Figure 1: UML diagram of the framework structure

iMissing: Subsection about generating subgraph (with limit), starting from a certain type
of node.; jWouldn’t this be part of Generating constraints? I feel like that doesn’t really
fit into technology stackg

3.2. Generating Constraints

For the generation of constraints, we used the adaption of the tool RDF2Graphl3] by Werkmeister[4][5].
j(this is the old version, we use the fork); ;I adapted the sentence, do you think this works
now, Valerian?; and adapted it for our purposes. As input, RDF2Graph takes a knowledge graph from
CommonCrawl. The properties of the graph are read out with several SPARQL queries. These properties
are saved in a new RDF graph. As output, we receive a graph containing constraints for the initial input
data. We use a tool offered by RDF2Graph to extract the constraints in ShEzx syntax. ;RDF2Graph
offers a tool to export the constraints to ShEx syntax.; ;I adapted the sentence, do you
think this is okay now, Valerian?;

Missing

figure

3.2.1. Integrating RDF2Graph with our framework

We implemented the following steps in order to integrate RDF2Graph into our project. We added
RDF2graph to our framework so that they could be compiled together;, and in the process minimally
updated it to be compatible with our version of Java and Jenas. ;I would leave out the
minimally, no need to downplay the work you did on this here, I think. Apart from that, I
like it, feel free to put it inz In addition, we changed some of the initial parameters of the RDF2Graph,
since it originally was intended as a stand-alone application. As we are handling Models in our software,
we changed the input to RDF2Graph to a Model. In our application, RDF2Graph does not use any
other storage apart from the Model data structure. Previously, such a Model needed to be created by
RDF2Graph, now it is provided by our framework. We did this so we could have full control over the
files handled by RDF2Graph. RDF2Graph allows for multithreaded execution, which requires a thread
pool. This thread pool was initially created by RDF2Graph. In our framework, it is provided by our
application. In addition, resources which are used by RDF2Graph had to be provided in a different way
so that they are still available when running from a server environment. We also changed some of the

queries. RDF2Graph supports multiple output graphs, however, this did not work . As we only work on
one Model at a time, we only use one output graph.

3.3. Validating Constraints

Given a RDF graph and a set of constraints, the validation consists of verifying that every node in the
graph fulfils the requirements given in the constraints. A graph consists of several different types. Each
of those types must conform to its definition outlined in the constraints. The results of the validation
output a boolean flag for every single node in the graph, indicating whether or not it conforms to its
type’s constraints. In case of nonconformity, a reason will be given.

In our code, this is implemented in the following way. As input, we receive a RDF subgraph as well as
a set of constraints. We use this to generate a shape map, which contains all of the types which need to

be validated. For the actual validation, the ShEzValidator provided by the Jena library was used. The
validator requires a set of constraints defined in valid ShEz syntax and a shape map. The shape map

describes which types of nodes need to be validated against which ShEz constraint definitions.

Missing
figure

The class ShexValidationRecord stores the result of the validation for every single node of the graph. Not
only is the individual result of every node checked against its relevant constraints, but we also calculate
the percentage of nodes that conform to their constraints.

3.4. Front-end

We implemented a front-end where the user can choose a knowledge graph as well as a type of knowledge
graph and its type. In addition, the user can also set a limit. As output, ShEz constraints as well as
a validation of those constraints are given. The constraints can be edited by the user and those edited
constraints can be revalidated. If a node is deemed invalid, a reason is given, e.g. ”Cardinality violation

(min=1): 0”. The user can download the subset of the graph which was validated. The interaction
between user, front-end and server can also be seen in Fig. Pl

Missing

figure

m
I
I

Class Schema is ProjectMember |
on Graph A >

‘RDFType': ‘Canal’

|

|

I

| |

|

I I

k— — — —displays waiting screen — — — —:

| |

I I

I I

| |

| |

I)

| === constraints + sessionlD: — — — — — A

| | |

(& — — — displays constraints— — — — - |

I I I
Loop | " o |

I P » |
can be repeated as | | |
often as the user wishes | I I

! lid: » !

T g} |

I I |

| [—check constraints on graph fetched for sessioniD

| |

: Ke-—mm-- {checkResult}— — — — — — — 3

(& — — —display {checkResult}- — — — |

+ + +

| | |

[} I I
opt J ——Download graph———— |

: + grapl »

—————— graph as file — — — — —

IR

J'< ———————— graph as file — — — — — — — 1
|
T
I
|

Figure 2: Sequence diagram showing the interaction between web application, user and server

4. Results

Our framework automatically infers constraints and validates the given data based on those constraints.
This can be done on two different CommonCrawl datasets. The user can choose one of those datasets
and a limit using the front-end. User can also edit constraints.

Missing

figure

5. Evaluation

5.1. Future work

Our application currently only handles two different datasets. For future work, this could be expanded so
that the framework could handle more and bigger datasets. Currently, the size of the datasets that can
be handled is limited by the RAM on the virtual machine. One possible solution for this could be to only
work on parts of the graph. One problem we encountered when handling datasets from CommonCrawl
was the quality of these datasets. Many datasets include non-unicode characters, which are replaced by
Jena with unicode characters. This takes a lot of computing time. In addition, many files include invalid

RDF syntax or are otherwise damaged. This means that in order to handle additional datasets, some
way of processing these datasets would have to be implemented. Processing could include filtering for
broken files and invalid syntax and fixing this before handling the dataset in the framework. In addition,
more possibilities for user interaction could be added. For instance, a feature could be added where a
user can upload their own dataset and have it validated.

5.2. Methodology

it labeled all the included graphics with h!, when we have finished the report we might want
to make it so, that one image is on the top and one on the bottom, if 2 pages are on the
same page, for example; For taking the measurements, the application was started locally on our
hardware, ;I would put a full stop here and maybe start the next sentence like ”"This was done
to minimise..; to minimize side-effects of other applications running on the virtual machine where the
live-instance is deployed. The JVM was additionally setup jAdditionally, the JVM was set up..?;
to use up to 16 GB of main memory for its heap to allow parallel queries without compromising the
runtime of the executions, arising from extensive swap usage. jThis sentence is very long, maybe
we can split it somehow?;

5.3. Runtime

Figures [3 and [4 show our jthe?; measurements we obtained by changing the LIMIT input parameter.
This parameter limits the size of the start-node subset, from which connected nodes are queried. All the
measurements are shown in Tables [l and 2

The results shown in Figure [3| were to be expected. First of all, the runtime of constructing the desired
subset of the graph is considerably larger than the time needed to create the ShFEx constraints, or to
validate the constraints on the graph. Secondly, the runtime of constructing the subgraph scales with
the LIMIT. This becomes especially evident in Figures [3a] and

Execution Type . Validation Time . ShEXx Creation Time . Subgraph Query Time

12000~
6000 -

2 9000- 2 2
I 1l 4000~ I
T & & 4000~
£ £ £
i~ 6000~ - -
e j j
k=] k=] k=]
3 g 2000~ 3 2000~
L 3000- L L
u, u w
0- 0- 0-
0 2000 4000 6000 200 400 600 800 0 500 1000 1500
Subset size of starting nodes Subset size of starting nodes Subset size of starting nodes
(a) RDFType = Canal (b) RDFType = RiverBodyOfWater (¢) RDFType = Service

Figure 3: Execution times per RDFType, per size of start-node subset on RiverBodyOfWater dataset

To understand the behaviour shown in Figure b} we want to look at Figure [d] which shows the same
runtimes, but grouped by the number of triples in the subgraph, on which the constraints are created.
Unlike in Figures [4aland @ the maximum number of triples (shown in the x-coordinate in Figure , is
1769. This is also the amrefer to figures paperount ; What does this mean?; of triples contained in
the subgraph that we get without providing any limit. Therefore, providing a limit larger than 200 won’t
enrich the constructed graph, keeping the time almost constant in regards to the LIMIT parameter.

Execution Type . Validation Time . ShEXx Creation Time . Subgraph Query Time

12000 -
6000 -

£ 9000- g g
1 11 4000 - 1l
& = 5 4000~
E E E
= 6000~ [[
c o o
S S S
3 3 2000~ 3 2000-
L 3000- L 193
i, u, u,
0- 0- 0-
0 5000 10000 15000 500 1000 1500 2000 4000 6000
Number of triples Number of triples Number of triples
(a) RDFType = Canal (b) RDFType = RiverBodyOfWater (¢) RDFType = Service

Figure 4: Execution times per RDFType, per number of triples on RiverBodyOfWater dataset

Figure [5] shows the runtime without limiting the construction of the subgraph. Note the much larger
runtime needed for querying the graph, despite resulting in the same amount of triples when providing
a large enough LIMIT.

Execution Type . Validation Time . ShEXx Creation Time . Subgraph Query Time

4e+05 -
3e+05-
2e+05 -
le+05-
0e+00 -

' ' | '
Canal GeoCoordinates RiverBodyOfWater Service
Dataset

=ms

[Execution Time]

Figure 5: Execution times per RDFType of the RiverBodyOfWater dataset (containing 49915 triples)

5.4. Correctness
5.4.1. ShEx Generation

We thought Shezer, which was already mentioned in Section [2] was a good fit for cross validating our
ShEz-generation. However, due to our limited knowledge of operating this tool, we did not manage to
generate proper constraints for our RiverBodyOfWater-dataset. Our attempt at using this tool is shown
in Figure [7} which generated the trivial, non-restrictive constraints shown in Figure

Therefore, we checked the generated constraints manually for small subgraphs (see Figures [9} [L0] and
and identified two issues with our tool.

Firstly, if the dataset consists of only stand-alone blank nodes, as seen in Figure [6] then Rdf2Graph does
not infer any ShEz-constraints. This was the case for the generated subgraph using RiverBodyOfWater
with a LIMIT of 50, and the resulting ShEz can be seen in Figure [I0]

Secondly, optional properties are not always inferred and therefore missing from the generated ShFEz-
constraints. This also happens for unlimited subgraphs (see Figures and , with the exception
of the RiverBodyOfWater-RDFtype, where it looks like the constraints are complete, ; Would put a
full stop here and start new sentence "However,...”; however due to the large graph manually
checking for correctness is infeasible. We did not see a correlation between missing constraint-properties
and the shape of the graph.

5.4.2. ShEx Validation

The generated ShEz-constraints for small subgraphs (Canal with LIMIT 50, Service with LIMIT 50)
were cross validated using the online-tool RDFShape[2]. The validation result was the same as in our
tool.

6. Conclusion

N

[a <https://schema.org/Service> ;
<https://schema.org/serviceType>
"Marine Electrics"@en

[a <https://schema.org/Service> ;
<https://schema.org/description>
"A list of locations with dry dock facilities on the Main Canal of the Trent &
Mersey Canal"Qen ;
<https://schema.org/serviceType>
"Dry Dock"@en ;
<https://schema.org/url> <https://www.ukwaterwaysguide.co.uk/s/trent-mersey-canal/
main-canal/dry-dock>

Figure 6: Blank Nodes in Turtle File

References

[1] Vue.js, documentation. https://v3.vuejs.org/.

[2] J. E. L. Gayo. Rdfshape. https://rdfshape.herokuapp.com/validate, 2021. Accessed: 2022-01-
23.

[3] J. van Dam. Rdf2graph. https://github.com/jessevdam/RDF2Graph/), 2022. Accessed: 2022-01-16.

[4] L. Werkmeister. Schema inference on wikidata. Master’s thesis, Karlsruher Institut fiir Technologie,
Fakultat fiir Informatik, 2018.

[5] L. WerkMeister. Rdf2graph. https://github.com/lucaswerkmeister/RDF2Graph, 2022. Accessed:
2022-01-16.

A. Contribution Statements

Please write down a short contribution statement for each member of your group. You may evaluate
the contribution along the three common categories: i) conception (i.e., problem framing, ideation,
validation, and method selection), ii) operational work (e.g., setting up your tech stack, algorithm
implementation, data analysis, and interpretation), and iii) writing & reporting (i.e., report drafting,
literature review, revision of comments, presentation preparations, etc.).

B. Appendix

You may use appendices to include any auxiliary results you would like to share, however cannot insert
in the main text due to the page limit.

B.1. Code listings and additional data

10

https://v3.vuejs.org/
https://rdfshape.herokuapp.com/validate
https://github.com/jessevdam/RDF2Graph/
https://github.com/lucaswerkmeister/RDF2Graph

from shexer.shaper import Shaper
from shexer.consts import NT, SHEXC

namespaces
"http
"http:
"http:
"http:
"http:
3

input_file

shaper = Shaper (

_dict

2/ www .
//www .
//www .
[/ www .
//schema .

w3

w3.

w3

w3.

= "rbow

{

.org/2001/XMLSchema#": "xsd",
org/1999/02/22-rdf -syntax-ns#": "rdf",
.org/2000/01/rdf -schema#": "rdfs",
org/2004/02/skos/core#": "skos",
org/": "schema"

.nt"

graph_file_input=input_file,

all _classes_mode=True,

input_format=NT,

remove_empty_shapes=False,
discard_useless_constraints_with_positive_closure=False,
depth_for_building_subgraph=100,

inverse_paths=True,
shapes_namespace="http://schema.org/",
all_instances_are_compliant_mode=False,
namespaces_dict=namespaces_dict,

instantiation_property="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#type")

rdf : type

output_fil

e = "shexer_rbow.shex"

shaper.shex_graph (output_file=output_file,

PREFIX xsd:
PREFIX rdf:

PREFIX rdf

PREFIX skos:

output_format=SHEXC,
acceptance_threshold=.1)

Figure 7: Running shexer on the full graph

<http://www.w3.0rg/2001/XMLSchema#>
<http://www.w3.0rg/1999/02/22-rdf -syntax -ns#>

s: <http://www.w3.0rg/2000/01/rdf -schema#>

<http://www.w3.0rg/2004/02/skos/core#>

PREFIX : <http://schema.org/>

:PropertyValue

{
}

:RiverBodyOfWater

“ A

... many more empty terms

Figure 8: Shexer output

11

Default

N

N

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf -syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.o0rg/2004/02/skos/core#>
PREFIX schema: <http://schema.org/>

<https://schema.org/Canal> {
<https://schema.org/description> rdf:langString?;
<https://schema.org/name> rdf:langString?;
#<https://schema.org/url> .7 # <-- missing from generated ShEx.
}

<https://schema.org/RiverBodyOfWater> {
<https://schema.org/description> rdf:langString;
<https://schema.org/name> rdf:langString;
<https://schema.org/url>

}

<https://schema.org/Service> {
<https://schema.org/description> rdf:langString?;
<https://schema.org/serviceType> rdf:langString;
<https://schema.org/url> .?

}

Figure 9: Generated ShEz-constraints of Canal with LIMIT 50

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.o0rg/2004/02/skos/core#>
PREFIX schema: <http://schema.org/>

Figure 10: Generated ShFEz-constraints of RiverBodyOfWater with LIMIT 50

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf -syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.o0rg/2004/02/skos/core#>
PREFIX schema: <http://schema.org/>

<https://schema.org/Canal> {
<https://schema.org/description> rdf:langString?;
<https://schema.org/name> rdf:langString?;
#<https://schema.org/url> .7 # <-- missing from generated ShEx.
}

<https://schema.org/RiverBodyOfWater> {
<https://schema.org/description> rdf:langString;
<https://schema.org/name> rdf:langString;
<https://schema.org/url>

}

<https://schema.org/Service> {
<https://schema.org/description> rdf:langString?;
<https://schema.org/serviceType> rdf:langString;
#<https://schema.org/url> .7 # <-- missing from generated ShEx.
}

Figure 11: Generated ShEz-constraints of Service with LIMIT 50

12

PREFIX xsd: <http://www.w3.o0rg/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#>

3 PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.o0rg/2004/02/skos/core#>
PREFIX schema: <http://schema.org/>

<https://schema.org/Canal> {
<https://schema.org/address> rdf:langString?; # <-- Only 1 standalone blank node with
this property
<https://schema.org/description> rdf:langString?;
<https://schema.org/name> rdf:langString?;
#<https://schema.org/url> .7 # <-- missing from generated ShEx.
}

<https://schema.org/RiverBodyOfWater> {
<https://schema.org/description> rdf:langString;
<https://schema.org/name> rdf:langString;
<https://schema.org/url>

}

<https://schema.org/Service> {
<https://schema.org/description> rdf:langString?;
<https://schema.org/serviceType> rdf:langString;
#<https://schema.org/url> .7 # <-- missing from generated ShEx.
}

Figure 12: Generated ShEz-constraints of Canal without a LIMIT

R'dftype Triples [tgraph] = ms [tshex] = ms [tvalidation] = ms
Canal 16961 360000 737 45
GeoCoordinates 204 468000 585 4
RiverBodyOfWater 1769 468000 613 15
Service 7334 462000 618 19

Table 1: Execution times per RDF-Type, queried on full graph of the RiverBodyOfWater dataset (con-
taining 49915 triples)

13

1 PREFIX xsd: <http://www.w3.o0org/2001/XMLSchema#>

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf -syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.o0rg/2004/02/skos/core#>
PREFIX schema: <http://schema.org/>

N

7 <https://schema.org/AdministrativeArea> {

8 <https://schema.org/name> rdf:langString;
9 <https://schema.org/url>

10}

12 <https://schema.org/Canal> {

13 <https://schema.org/description> rdf:langString?;
14 <https://schema.org/name> rdf:langString?;

15 <https://schema.org/url> .7

16 }

1s <https://schema.org/EducationalOrganization> {
19 <https://schema.org/name> rdf:langString;

20 <https://schema.org/url>

21 }

<https://schema.org/GeoCoordinates> {

24 <https://schema.org/elevation> rdf:langString?;
25 <https://schema.org/latitude> rdf:langString?;

26 <https://schema.org/longitude> rdf:langString?

27 }
20 <https://schema.org/Map> {

30 <https://schema.org/sameAs>
31}

33 <https://schema.org/Place> {

34 (

35 <https://schema.org/containsPlace> @<https://schema.org/AdministrativeArea>* |

36 <https://schema.org/containsPlace> @<https://schema.org/EducationalOrganization>?
37) H

38 <https://schema.org/name> rdf:langString?;

39 (

10 <https://schema.org/url> .7 |

41 <https://schema.org/url> rdf:langString?

12)

15 <https://schema.org/RiverBodyOfWater> {

16 <https://schema.org/address> rdf:langString?;

7 <https://schema.org/alternateName> rdf:langString*;

18 <https://schema.org/containedInPlace> @<https://schema.org/Place>x*;
19 <https://schema.org/description> rdf:langStrings*;

50 <https://schema.org/geo> @<https://schema.org/GeoCoordinates >*;
51 <https://schema.org/hasMap> @<https://schema.org/Map>*;

52 <https://schema.org/image> rdf:langStringx*;

53 <https://schema.org/name> rdf:langString+;

54 <https://schema.org/sameAs> .x*

55 }

57 <https://schema.org/Service> {

58 <https://schema.org/description> rdf:langString?;
59 <https://schema.org/serviceType> rdf:langString;
60 <https://schema.org/url> .7

61 }

Figure 13: Generated ShEz-constraints of RiverBodyOfWater without a LIMIT

14

1 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

2> PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
3 PREFIX rdfs: <http://www.w3.o0org/2000/01/rdf-schema#>
PREFIX skos: <http://www.w3.o0rg/2004/02/skos/core#>

5 PREFIX schema: <http://schema.org/>

7 <https://schema.org/Canal> {

s <https://schema.org/description> rdf:langString?;

9 <https://schema.org/name> rdf:langString?;

10 #<https://schema.org/url> .? <-- Missing from generated ShEx
11}

13 <https://schema.org/RiverBodyOfWater> {

14 <https://schema.org/description> rdf:langString;
15 <https://schema.org/name> rdf:langString;

16 <https://schema.org/url> .

17}

19 <https://schema.org/Service> {

20 <https://schema.org/description> rdf:langString?;

21 <https://schema.org/serviceType> rdf:langString;

22 #<https://schema.org/url> .7 # <-- Missing from generated ShEx
23 }

Figure 14: Generated ShEz-constraints of Service without a LIMIT

Rdftype Limit | Triples | [tgrapn] = mS | [tshea] = mS | [tvalidation] = MS
Canal 50 226 2420 923 44
Canal 100 328 2260 709 13
Canal 200 765 1740 637 8
Canal 400 1588 2020 559 9
Canal 800 3176 3270 661 8
Canal 1600 6817 5030 654 17
Canal 3200 13504 9100 736 33
Canal 6400 16961 10790 665 25
RiverBodyOfWater 50 192 2680 615 5
RiverBodyOfWater 75 291 2490 586 4
RiverBodyOfWater 100 1187 2700 624 7
RiverBodyOfWater 200 1769 4890 643 17
RiverBodyOfWater 400 1769 4840 641 8
RiverBodyOfWater 800 1769 4980 619 18
Service 50 615 1640 602 7
Service 100 1022 1790 562 6
Service 200 1852 2300 577 9
Service 400 3041 2880 601 6
Service 800 5437 4500 674 30
Service 1600 7334 5350 639 26

Table 2: Execution times per RDF-Type, limited size of start-node subset (using the RiverBodyOfWater
dataset)

15

	Introduction
	Related Work
	Approach
	Technology Stack
	Generating Constraints
	Integrating RDF2Graph with our framework

	Validating Constraints
	Front-end

	Results
	Evaluation
	Future work
	Methodology
	Runtime
	Correctness
	ShEx Generation
	ShEx Validation

	Conclusion
	References
	Contribution Statements
	Appendix
	Code listings and additional data

