
PS 703301 – WS 2021/22
Current Topics in Computer Science

Final Report

Shaping Knowledge Graphs

Philipp Gritsch
Jamie Hochrainer

Kristina Magnussen
Danielle McKenney
Valerian Wintner

supervised by
M.Sc. Elwin Huaman

Contents

1. Introduction 3

2. Related Work 3

3. Approach 4
3.1. Technology Stack . 4
3.2. Constructing a Subgraph . 4
3.3. Generating Constraints . 5
3.4. Validating Constraints . 5
3.5. Front-end . 6

4. Evaluation 8
4.1. Methodology . 8
4.2. Runtime . 8
4.3. Correctness . 9

4.3.1. ShEx Generation . 9
4.3.2. ShEx Validation . 10

5. Results 11

6. Future work 11

7. Conclusion 11

References 11

A. Contribution Statements 12

B. Appendix 13
B.1. Code listings and additional data . 13

2

1. Introduction

With the massive amount of data available on the internet, which is growing every day, a convenient,
flexible, and efficient way of storing data becomes more and more important. In addition, concrete
objects, abstract ideas as well as connections and relationships between entities have to be represented.
This is where knowledge graphs become important. Knowledge graphs structure data in the form of a
graph. This graph can contain types, entities, literals, and relationships. A knowledge graph allows for
flexible data structures and can make it easier to find and process relevant data. However, the datasets
stored in such a graph are often inconsistent and prone to containing errors. Working with such datasets
can be greatly facilitated by defining a consistent shape for the data, based on the type of entity it
represents. This shaping is done by inferring constraints over the data and validating all nodes in the
graph based on these constraints. This can give important insight into the structure of the data. For
instance, when all nodes of a type conform to the given constraints, it may be useful to define these as
required attributes for all future nodes to ensure uniformity in the data. Non conforming nodes may
also deliver important insight into where information is missing. For example, if 99% of nodes of a given
type conform to some constraints, it may be worthwhile to investigate the remaining 1% to see if they
are missing necessary information or are otherwise corrupt.

For this reason, we implemented a framework for shaping knowledge graphs. This consisted of three
major steps: fetching a subset dataset from a knowledge graphs, inferring constraints, and validating
a knowledge graph against these constraints. We also provide a user interface to this purpose. These
steps are described in Section 3. After this was done, we evaluated our framework concerning runtime
and correctness which is outlined in Section 4. Results of our project are shown in Section 5. A future
outlook is given in Section 6. Finally, a conclusion of our work is provided in Section 7.

2. Related Work

The need for automatic tools that are able to infer meta information on the structure of knowledge graphs
has already been recognized by different researchers. This stems from the fact that manual constraint
inference becomes infeasible for large datasets.

One tool which can be used to automatically infer constraints over a knowledge graph is RDF2Graph[8, 7].
Our framework makes use of an adapted version of this tool by Werkmeister [9, 10], which uses several
SPARQL queries to gather the structural information of each node in the underlying graph in a first
phase. Subsequently, the queried information is gathered and simplified. This is achieved by merging
constraint information of classes belonging to the same type and predicates. While Van Dam et al. used
the RDF2Graph tool on the UniPort RDF resource, Werkmeister made adaptions to also infer Wikidata
constraints.

Fernandez-Álvarez et al. have taken a different approach with their tool Shexer [3]. In contrast to the
aforementioned tool, they avoid querying the whole underlying graph by using an iterative approach,
determining whether or not the current iterated (sub-)set of triples is relevant for the constraint genera-
tion process. Given a target shape, the preselected triples are used to decorate each target instance with
its constraints.

Another constraint generator has been introduced by Spahiu et al. with ABSTAT [6]. This tool uses an
approach similar to that of RDF2Graph by collecting structural information using SPARQL queries and
summarizing those constraints afterwards.

3

Elwin Huaman
Usually, future work is described after the conclusions.

Elwin Huaman

Elwin Huaman

Elwin Huaman
What were those adaptations?

Elwin Huaman

Elwin Huaman

3. Approach

To construct a framework that offers a way to evaluate a knowledge graph in an automated way, we
divided our project into three main subtasks. At first, we fetch a subgraph of a knowledge graph from
the CommonCrawl datasets, as explained in greater detail in Section 3.2. After this, our framework
infers constraints over this data set (see Section 3.3). In the last step, the subgraph is validated against
the constraints (see Section 3.4). The structure of the framework can be seen in Fig. 1. The user can
interact with this framework over the front-end (see Section 3.5).
The framework can be found in our git repository [5]. The repository also includes a README file
describing how to set-up and install the project.

Figure 1: UML diagram of the framework structure

3.1. Technology Stack

In this section, we briefly enumerate the main technologies that we used in this project. We used Maven
as a project management tool. The framework was implemented in Java. Here, we also used the Java
framework Jena[1], which offers an RDF API as well as support for SPARQL queries and the ShEx
language. The front-end was implemented using Vue3 [2] as a front-end framework and PrimeVue as a
library for the different UI components. For the deployment of our application we used a single virtual
machine. Access to the front-end is done via a single Apache server. The front-end accesses the back-end
via an internal REST-API.

3.2. Constructing a Subgraph

Because knowledge graphs can be very large and contain many nodes, we concentrated on querying
smaller subgraphs and only working on those. With this method, the relevant subgraph gets extracted
from a knowledge graph and can be worked upon in isolation. We take our initial knowledge graphs from
the CommonCrawl datasets and import them as a static file.

4

Elwin Huaman

Elwin Huaman
Sometimes you add a space between the text and the cite, sometimes not. Keep consistent. Usually there is a space in between :)

1 CONSTRUCT {
2 ?s ?p ?o
3 }
4 %s # %s replaced by optional graph -name
5 WHERE {
6 GRAPH ?g {
7 ? subject (<>|!<>)* ?s .
8 ?s ?p ?o .
9 {

10 SELECT DISTINCT ? subject
11 WHERE {
12 GRAPH ?g { ? subject a %s } # %s replaced by type of starting - nodes
13 } %s # %s replaced by optional limit
14 }
15 }
16 }

Figure 2: The SPARQL-query creating the subgraph. The %s get substituted before executing the query.

Figure 2 shows the query we used to create a subgraph. At line 7 we used property paths1 to query all
nodes connected to those of an initial subset (lines 10 to 13). This subset can optionally be limited to a
certain size, but is always limited to nodes of a certain type.

3.3. Generating Constraints

To shape a knowledge graph we need to infer constraints on the previously fetched subgraph. For
the generation of constraints, we used the adaption of the tool RDF2Graph[7] by Werkmeister[10] and
adapted it for our purposes. As input, RDF2Graph takes a constructed subgraph as described in Section
3.2. The properties of the graph are read out with several SPARQL queries. These properties are saved
in a new RDF graph. As output, we receive a graph containing constraints for the initial input data.
We use a tool offered by RDF2Graph to extract the constraints in ShEx syntax.

We implemented the following steps in order to integrate RDF2Graph into our project. We added
RDF2Graph to our framework so that they could be compiled together, and in the process updated it as
much as was needed to be compatible with our version of Java and Jena. In addition, we changed some
of the initial parameters of the RDF2Graph, since it originally was intended as a stand-alone application.
As we are handling Models in our software, we changed the input from a RDF2Graph to a Model. In our
application, RDF2Graph does not use any other storage apart from the Model data structure. Previously,
such a Model needed to be created by RDF2Graph; now it is provided by our framework. We did this so
we could have full control over the files handled by RDF2Graph. RDF2Graph allows for multithreaded
execution, which requires a thread pool. This thread pool was initially created by RDF2Graph. In our
framework, it is provided by our application. In addition, resources which are used by RDF2Graph had
to be provided in a different way so that they are still available when running from a server environment.
We also changed some of the queries. RDF2Graph supports multiple output graphs, however, this did
not work. As we only work on one Model at a time, we only use one output graph.

3.4. Validating Constraints

Given a RDF graph and a set of constraints, the validation consists of verifying that every node in the
graph fulfils the requirements given in the constraints. A graph may contain node with different types.
Each of those types must conform to its corresponding definition outlined in the constraints. The result
of the validation is a multidimensional list containing every node’s id, a boolean flag, and an optional
’reason’ entry. The boolean flag indicates whether or not the node conforms to its type’s constraints. In
case of nonconformity, a reason will be given.

1https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#propertypaths

5

https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#propertypaths
Elwin Huaman

Elwin Huaman
,

1 SELECT DISTINCT ?type
2 WHERE {
3 ?s a ?type
4 }

Figure 3: The very simple query getting the different types to be used in the shape map.

1 { FOCUS a <https :// schema .org/ GeoCoordinates >}@< https :// schema .org/ GeoCoordinates >,
2 { FOCUS a <https :// schema .org/ RiverBodyOfWater >}@< https :// schema .org/ RiverBodyOfWater >,
3 { FOCUS a <https :// schema .org/Service >}@< https :// schema .org/Service >,
4 { FOCUS a <https :// schema .org/Canal >}@< https :// schema .org/Canal >,
5 { FOCUS a <https :// schema .org/ AdministrativeArea >}@< https :// schema .org/ AdministrativeArea

>,
6 { FOCUS a <https :// schema .org/Map >}@< https :// schema .org/Map >,
7 { FOCUS a <https :// schema .org/Place >}@< https :// schema .org/Place >,
8 { FOCUS a <https :// schema .org/ EducationalOrganization >}@< https :// schema .org/

EducationalOrganization >

Figure 4: The shape map used for validating the full subgraph starting with RiverBodyOfWater-nodes.

For the implementation of this process, an RDF subgraph and ShEx constraints are required as input.
Then, we use this to generate a shape map, which contains all of the types that need to be validated. For
the actual validation, the ShExValidator provided by the Jena library was used. The validator requires
a set of constraints defined in valid ShEx syntax and a shape map. We query the subgraph for its types
of nodes (see Figure 3), and construct the shape map from that. Figure 4 shows an example.

The class ShexValidationRecord stores the result of the validation for each node of the graph. Addition-
ally, the percentage of nodes that conform to their constraints is calculated and stored.

3.5. Front-end

We implemented a front-end where the user can choose a knowledge graph as well as its type (see Figure 5).
In addition, the user can also set a limit on the number of nodes of the specified type that they wish
to have constraints generated for. As output (see Figure 6), ShEx constraints as well as a validation of
the subgraph against those constraints are returned. The constraints can be edited by the user and the
selected subgraph can be re-validated against the newly edited constraints. If a node is deemed invalid,
a reason is given, e.g. ”Cardinality violation (min=1): 0”. The user can download the subgraph that
was validated. The interaction between user, front-end and server can also be seen in Fig. 7.

Figure 5: The frontend, showing a selection of dataset, RDFType, and LIMIT of starting-nodes.

6

Figure 6: The frontend, showing the calculated ShEx-constraints and validation-results.

7

:user:user :Webapp:Webapp :ServerSession:ServerSession

Class Schema is ProjectMember
on Graph A

 'Dataset': 'RiverbodyOfWater'
 'RDFType': 'Canal'

constraints + sessionID

displays constraints

displays waiting screen

adapts constraints

validate constraints

check constraints on graph fetched for sessionID

{checkResult}

display {checkResult}

Loop

can be repeated as
often as the user wishes

Loop

can be repeated as
often as the user wishes

<<create>>

optopt Download graph

Download graph

graph as file
graph as file

Figure 7: Sequence diagram showing the interaction between web application, user and server

4. Evaluation

In this section we evaluate our tool. We explain the methodology in Section 4.1. In Section 4.2 we
measured the runtime of our tool with different input parameters. Furthermore, we tested correctness
of the generated ShEx-constraints and also cross validated them in Section 4.3.

4.1. Methodology

For taking measurements, the application was started locally on our hardware. This was done to minimise
side-effects of other applications running on the virtual machine where the live-instance is deployed. We
used a machine with a Ryzen 9 3900x CPU with 12x3.8GHz cores, DDR4 RAM and an SSD. Additionally,
the JVM was set up to use up to 16 GB of main memory for its heap to allow parallel queries without
compromising the runtime of the executions, arising from extensive swap usage.

4.2. Runtime

Figures 8 and 9 show the measurements we obtained by changing the LIMIT input parameter. This
parameter limits the size of the start-node subset, from which connected nodes are queried. All the
measurements are shown in Tables 1 and 2.

The results shown in Figure 8 were to be expected. First of all, the runtime of constructing the desired
subset of the graph is considerably larger than the time needed to create the ShEx constraints, or to
validate the constraints on the graph. Secondly, the runtime of constructing the subgraph scales with
the LIMIT. This becomes especially evident in Figures 8a and 8c.

To understand the behaviour shown in Figure 8b, we want to look at Figure 9, which shows the same
runtimes, but grouped by the number of triples in the subgraph on which the constraints are created. As
opposed to Figures 9a and 9c, the maximum number of triples (shown in the x-coordinate in Figure 9b),
is 1769. This is also the amount of triples contained in the subgraph that we get without providing any

8

Execution Type Validation Time ShEx Creation Time Subgraph Query Time

0

3000

6000

9000

12000

0 2000 4000 6000
Subset size of starting nodes

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

(a) RDFType = Canal

0

2000

4000

200 400 600 800
Subset size of starting nodes

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

(b) RDFType = RiverBodyOfWater

0

2000

4000

6000

0 500 1000 1500
Subset size of starting nodes

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

(c) RDFType = Service

Figure 8: Execution times per RDFType, per size of start-node subset on RiverBodyOfWater dataset

limit. Therefore, providing a limit larger than 200 won’t enrich the constructed graph, keeping the time
almost constant in regards to the LIMIT parameter.

Execution Type Validation Time ShEx Creation Time Subgraph Query Time

0

3000

6000

9000

12000

0 5000 10000 15000
Number of triples

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

(a) RDFType = Canal

0

2000

4000

500 1000 1500
Number of triples

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

(b) RDFType = RiverBodyOfWater

0

2000

4000

6000

2000 4000 6000
Number of triples

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

(c) RDFType = Service

Figure 9: Execution times per RDFType, per number of triples on RiverBodyOfWater dataset

Figure 10 shows the runtime without limiting the construction of the subgraph. Note the much larger
runtime needed for querying the graph, despite resulting in the same amount of triples when providing
a large enough LIMIT.

4.3. Correctness

4.3.1. ShEx Generation

We thought Shexer (see Section 2) was a good fit for cross validating our ShEx-generation. However, due
to our limited knowledge of operating this tool, we did not manage to generate proper constraints for

9

Execution Type Validation Time ShEx Creation Time Subgraph Query Time

0e+00

1e+05

2e+05

3e+05

4e+05

Canal GeoCoordinates RiverBodyOfWater Service
Dataset

[E
xe

cu
tio

n
T

im
e]

 =
 m

s

Figure 10: Execution times per RDFType of the RiverBodyOfWater dataset (containing 49915 triples)

1 [a <https :// schema .org/Service > ;
2 <https :// schema .org/ serviceType >
3 " Marine Electrics "@en
4] .
5

6 [a <https :// schema .org/Service > ;
7 <https :// schema .org/ description >
8 "A list of locations with dry dock facilities on the Main Canal of the Trent &

Mersey Canal "@en ;
9 <https :// schema .org/ serviceType >

10 "Dry Dock"@en ;
11 <https :// schema .org/url > <https :// www. ukwaterwaysguide .co.uk/s/trent -mersey - canal /

main - canal /dry -dock >
12] .

Figure 11: Blank Nodes in Turtle File

our RiverBodyOfWater-dataset. Our attempt at using this tool is shown in Figure 12, which generated
the trivial, non-restrictive constraints shown in Figure 13.

Therefore, we checked the generated constraints manually for small subgraphs (see Figures 14, 15 and
16) and identified two issues with our tool.

Firstly, if the dataset consists of only stand-alone blank nodes, as seen in Figure 11, then Rdf2Graph does
not infer any ShEx-constraints. This was the case for the generated subgraph using RiverBodyOfWater
with a LIMIT of 50, and the resulting ShEx can be seen in Figure 15.

Secondly, optional properties are not always inferred and therefore missing from the generated ShEx-
constraints. This also happens for unlimited subgraphs (see Figures 17, 18 and 19), with the exception of
the RiverBodyOfWater-RDFType, where it looks like the constraints are complete. However, due to the
size of the graph manually checking for correctness is infeasible. We did not see a correlation between
missing constraint-properties and the shape of the graph.

4.3.2. ShEx Validation

The generated ShEx-constraints for small subgraphs (Canal with LIMIT 50, Service with LIMIT 50)
were cross validated using the online-tool RDFShape[4]. The validation result was the same as in our
tool.

10

5. Results

Our framework automatically infers constraints and validates the given data based on those constraints.
This can be done on two different CommonCrawl datasets. The user can choose one of those datasets
and a limit using the front-end. In addition, the user can also edit the constraints. Our evaluation
in Section 4 showed that the validation of a subgraph works as expected. However, the constraints
generated are prone to missing an optional url attribute and would benefit from more tests and tuning.
In addition, we could also see that the runtime of the tool is rather slow. Possible improvements to our
framework are discussed in more depth in Section 6. Generally, our tool works as intended, even though
there is still some room for improvement.

6. Future work

Our application currently only handles two different datasets. For future work, this could be expanded so
that the framework could handle more and bigger datasets. Currently, the size of the datasets that can
be handled is limited by the RAM on the virtual machine. One possible solution for this could be to only
work on parts of the graph. One problem we encountered when handling datasets from CommonCrawl
was the quality of these datasets. Many datasets include non-unicode characters, which are replaced by
Jena with unicode characters. This takes a lot of computing time. In addition, many files include invalid
RDF syntax or are otherwise damaged. This means that in order to handle additional datasets, some
way of processing these datasets would have to be implemented. Processing could include filtering for
broken files and invalid syntax and fixing this before handling the dataset in the framework. In addition,
more possibilities for user interaction could be added. For instance, a feature could be added where a
user can upload their own dataset and have it validated.

7. Conclusion

Overall, we achieved the creation of a functional interface that allows a user to view and edit automatically
generated constraints for a given graph. A highlight of our tool certainly is its ease of use, simply
presenting a user with a drop-down list of RDF types that they can evaluate. Although the selection
is minuscule at the moment, this could be trivially expanded to allow a greater selection of RDF types
from the CommonCrawl dataset. One of the persistent flaws of the tool we developed remains its poor
performance with larger graphs, however, to a certain extent, this is inevitable when working with such
large amounts of data. Such a complex SPARQL query that fetches an ’infinite depth’ of related objects
is bound have a relatively slow runtime. In addition, although the vast majority of the constraints that
could be present on a graph do get generated, additional, as well as automated testing would be required
to increase confidence in the completeness and correctness of said constraints. The validation of these
constraints though, works as expected, and without performance issues. In the end, we succeeded in
developing a working prototype that could form the base of a more powerful, flexible tool for easily
gaining insight into any knowledge graph.

References

[1] Apache Jena, documentation. https://jena.apache.org/index.html.

[2] Vue.js, documentation. https://v3.vuejs.org/.

[3] D. Fernandez-Álvarez, J. E. Labra-Gayo, and D. Gayo-Avello. Automatic extraction of shapes using
shexer. Knowledge-Based Systems, 238:107975, 2022.

11

https://jena.apache.org/index.html
https://v3.vuejs.org/
Elwin Huaman

Elwin Huaman
keep the references consistent. Websites are referenced differently, sometimes with accessed date.

[4] J. E. L. Gayo. Rdfshape. https://rdfshape.herokuapp.com/validate, 2021. Accessed: 2022-01-
23.

[5] D. McKenney, K. Magnussen, P. Gritsch, V. Wintner, and J. Hochrainer. Kg shapes. https:
//git.uibk.ac.at/csaz8448/kg-shapes, 2022. Accessed: 2022-02-04.

[6] B. Spahiu, R. Porrini, M. Palmonari, A. Rula, and A. Maurino. Abstat: Ontology-driven linked
data summaries with pattern minimalization. In SumPre@ESWC, 2016.

[7] J. van Dam. Rdf2graph. https://github.com/jessevdam/RDF2Graph/, 2022. Accessed: 2022-01-
16.

[8] J. C. van Dam, J. J. Koehorst, P. J. Schaap, V. A. Martins dos Santos, and M. Suarez-Diez.
Rdf2graph a tool to recover, understand and validate the ontology of an rdf resource. Journal of
Biomedical Semantics, 6(1):39, Oct 2015.

[9] L. Werkmeister. Schema inference on wikidata. Master’s thesis, Karlsruher Institut für Technologie,
Fakultät für Informatik, 2018.

[10] L. WerkMeister. Rdf2graph. https://github.com/lucaswerkmeister/RDF2Graph, 2022. Accessed:
2022-01-16.

A. Contribution Statements

Each member of the group contributed in an enthusiastic and equal manner, leveraging their individual
skills to contribute to the parts of the project where they could make the most impact. Additionally,
everyone was eager to learn new skills and teach others what they knew. We are all satisfied with how
much everyone contributed and how well we worked together. The following presents a brief summary
of each group member’s contribution to the project:

• Danielle’s programming and organizational skills were a great asset to the team. She ensured
that meetings had structure, with clear goals, responsibilities, and deadlines defined. She worked
most the implementing the ShEx validation and developing the backend app, leading several pair
programming sessions with her team members. She also participated in the final presentation and
parts of the report.

• Jamie contributed most with her teamwork skills and adaptability. Although she did not have as
much experience programming in java and javascript as other team members, she readily made an
effort to learn and thrived with the pair programming method we implemented, working largely on
the webapp and parts of the RDF2Graph implementation. Additionally, she was heavily involved
in the designing the presentations and reviewing the report.

• Kristina contributed most in the research and planning of the project. Her research skills were
heavily utilized in the initial phase of the project, which greatly helped the others when it came
to choosing libraries and overcoming difficulties in the implementation of technical problems. She
worked most on programming parts of the project requiring knowledge of ShEx. Her extra research
also proved useful in delivering thorough and well thought out presentations and drafting the report.

• Philipp’s technical skills were highly useful in the programming part of the project. He advised the
selection of the tech stack and led many pair programming sessions, readily sharing his technical
knowledge with the other team members. This also came in handy when contributing the evaluation
and ’related work’ sections of the report.

• Valerian, similarly to Philipp, also had strong technical skills that he applied in various areas of
the project. He worked on the SPARQL parts of the programming and on creating the frontend
app, often leading a pair programming session. He also contributed to the evaluation and writing
up the results of this.

12

https://rdfshape.herokuapp.com/validate
https://git.uibk.ac.at/csaz8448/kg-shapes
https://git.uibk.ac.at/csaz8448/kg-shapes
https://github.com/jessevdam/RDF2Graph/
https://github.com/lucaswerkmeister/RDF2Graph

1 from shexer . shaper import Shaper
2 from shexer . consts import NT , SHEXC
3

4 namespaces_dict = {
5 "http :// www.w3.org /2001/ XMLSchema #": "xsd",
6 "http :// www.w3.org /1999/02/22 - rdf -syntax -ns#": "rdf",
7 "http :// www.w3.org /2000/01/ rdf - schema #": "rdfs",
8 "http :// www.w3.org /2004/02/ skos/core#": "skos",
9 "http :// schema .org/": " schema "

10 }
11

12 input_file = "rbow.nt"
13

14 shaper = Shaper (
15 graph_file_input = input_file ,
16 all_classes_mode =True ,
17 input_format =NT ,
18 remove_empty_shapes =False ,
19 discard_useless_constraints_with_positive_closure =False ,
20 depth_for_building_subgraph =100 ,
21 inverse_paths =True ,
22 shapes_namespace ="http :// schema .org/",
23 all_instances_are_compliant_mode =False ,
24 namespaces_dict = namespaces_dict ,
25 instantiation_property ="http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type") # Default

rdf:type
26

27 output_file = " shexer_rbow .shex"
28

29 shaper . shex_graph (output_file = output_file ,
30 output_format =SHEXC ,
31 acceptance_threshold =.1)

Figure 12: Running shexer on the full graph

B. Appendix

You may use appendices to include any auxiliary results you would like to share, however cannot insert
in the main text due to the page limit.

B.1. Code listings and additional data

Rdftype Triples [tgraph] = ms [tshex] = ms [tvalidation] = ms
Canal 16961 360000 737 45
GeoCoordinates 204 468000 585 4
RiverBodyOfWater 1769 468000 613 15
Service 7334 462000 618 19

Table 1: Execution times per RDF-Type, queried on full graph of the RiverBodyOfWater dataset (con-
taining 49915 triples)

13

Elwin Huaman

Elwin Huaman
Point out what is described in the appendix.

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX : <http :// schema .org/>
6

7 : PropertyValue
8 {
9 }

10

11

12 : RiverBodyOfWater
13 {
14 }
15

16

17 : Hotel
18 {
19 }
20

21 # ... many more empty terms

Figure 13: Shexer output

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX schema : <http :// schema .org/>
6

7 <https :// schema .org/Canal > {
8 <https :// schema .org/ description > rdf: langString ?;
9 <https :// schema .org/name > rdf: langString ?;

10 #< https :// schema .org/url > .? # <-- missing from generated ShEx.
11 }
12

13 <https :// schema .org/ RiverBodyOfWater > {
14 <https :// schema .org/ description > rdf: langString ;
15 <https :// schema .org/name > rdf: langString ;
16 <https :// schema .org/url > .
17 }
18

19 <https :// schema .org/Service > {
20 <https :// schema .org/ description > rdf: langString ?;
21 <https :// schema .org/ serviceType > rdf: langString ;
22 <https :// schema .org/url > .?
23 }

Figure 14: Generated ShEx-constraints of Canal with LIMIT 50

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX schema : <http :// schema .org/>

Figure 15: Generated ShEx-constraints of RiverBodyOfWater with LIMIT 50

14

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX schema : <http :// schema .org/>
6

7 <https :// schema .org/Canal > {
8 <https :// schema .org/ description > rdf: langString ?;
9 <https :// schema .org/name > rdf: langString ?;

10 #< https :// schema .org/url > .? # <-- missing from generated ShEx.
11 }
12

13 <https :// schema .org/ RiverBodyOfWater > {
14 <https :// schema .org/ description > rdf: langString ;
15 <https :// schema .org/name > rdf: langString ;
16 <https :// schema .org/url > .
17 }
18

19 <https :// schema .org/Service > {
20 <https :// schema .org/ description > rdf: langString ?;
21 <https :// schema .org/ serviceType > rdf: langString ;
22 #< https :// schema .org/url > .? # <-- missing from generated ShEx.
23 }

Figure 16: Generated ShEx-constraints of Service with LIMIT 50

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX schema : <http :// schema .org/>
6

7 <https :// schema .org/Canal > {
8 <https :// schema .org/address > rdf: langString ?; # <-- Only 1 standalone blank node with

this property
9 <https :// schema .org/ description > rdf: langString ?;

10 <https :// schema .org/name > rdf: langString ?;
11 #< https :// schema .org/url > .? # <-- missing from generated ShEx.
12 }
13

14 <https :// schema .org/ RiverBodyOfWater > {
15 <https :// schema .org/ description > rdf: langString ;
16 <https :// schema .org/name > rdf: langString ;
17 <https :// schema .org/url > .
18 }
19

20 <https :// schema .org/Service > {
21 <https :// schema .org/ description > rdf: langString ?;
22 <https :// schema .org/ serviceType > rdf: langString ;
23 #< https :// schema .org/url > .? # <-- missing from generated ShEx.
24 }

Figure 17: Generated ShEx-constraints of Canal without a LIMIT

15

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX schema : <http :// schema .org/>
6

7 <https :// schema .org/ AdministrativeArea > {
8 <https :// schema .org/name > rdf: langString ;
9 <https :// schema .org/url > .

10 }
11

12 <https :// schema .org/Canal > {
13 <https :// schema .org/ description > rdf: langString ?;
14 <https :// schema .org/name > rdf: langString ?;
15 <https :// schema .org/url > .?
16 }
17

18 <https :// schema .org/ EducationalOrganization > {
19 <https :// schema .org/name > rdf: langString ;
20 <https :// schema .org/url > .
21 }
22

23 <https :// schema .org/ GeoCoordinates > {
24 <https :// schema .org/elevation > rdf: langString ?;
25 <https :// schema .org/latitude > rdf: langString ?;
26 <https :// schema .org/longitude > rdf: langString ?
27 }
28

29 <https :// schema .org/Map > {
30 <https :// schema .org/sameAs > .
31 }
32

33 <https :// schema .org/Place > {
34 (
35 <https :// schema .org/ containsPlace > @< https :// schema .org/ AdministrativeArea >* |
36 <https :// schema .org/ containsPlace > @< https :// schema .org/ EducationalOrganization >?
37);
38 <https :// schema .org/name > rdf: langString ?;
39 (
40 <https :// schema .org/url > .? |
41 <https :// schema .org/url > rdf: langString ?
42)
43 }
44

45 <https :// schema .org/ RiverBodyOfWater > {
46 <https :// schema .org/address > rdf: langString ?;
47 <https :// schema .org/ alternateName > rdf: langString *;
48 <https :// schema .org/ containedInPlace > @< https :// schema .org/Place >*;
49 <https :// schema .org/ description > rdf: langString *;
50 <https :// schema .org/geo > @< https :// schema .org/ GeoCoordinates >*;
51 <https :// schema .org/hasMap > @< https :// schema .org/Map >*;
52 <https :// schema .org/image > rdf: langString *;
53 <https :// schema .org/name > rdf: langString +;
54 <https :// schema .org/sameAs > .*
55 }
56

57 <https :// schema .org/Service > {
58 <https :// schema .org/ description > rdf: langString ?;
59 <https :// schema .org/ serviceType > rdf: langString ;
60 <https :// schema .org/url > .?
61 }

Figure 18: Generated ShEx-constraints of RiverBodyOfWater without a LIMIT

16

1 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
2 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
3 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
4 PREFIX skos: <http :// www.w3.org /2004/02/ skos/core#>
5 PREFIX schema : <http :// schema .org/>
6

7 <https :// schema .org/Canal > {
8 <https :// schema .org/ description > rdf: langString ?;
9 <https :// schema .org/name > rdf: langString ?;

10 #< https :// schema .org/url > .? <-- Missing from generated ShEx
11 }
12

13 <https :// schema .org/ RiverBodyOfWater > {
14 <https :// schema .org/ description > rdf: langString ;
15 <https :// schema .org/name > rdf: langString ;
16 <https :// schema .org/url > .
17 }
18

19 <https :// schema .org/Service > {
20 <https :// schema .org/ description > rdf: langString ?;
21 <https :// schema .org/ serviceType > rdf: langString ;
22 #< https :// schema .org/url > .? # <-- Missing from generated ShEx
23 }

Figure 19: Generated ShEx-constraints of Service without a LIMIT

Rdftype Limit Triples [tgraph] = ms [tshex] = ms [tvalidation] = ms
Canal 50 226 2420 923 44
Canal 100 328 2260 709 13
Canal 200 765 1740 637 8
Canal 400 1588 2020 559 9
Canal 800 3176 3270 661 8
Canal 1600 6817 5030 654 17
Canal 3200 13504 9100 736 33
Canal 6400 16961 10790 665 25
RiverBodyOfWater 50 192 2680 615 5
RiverBodyOfWater 75 291 2490 586 4
RiverBodyOfWater 100 1187 2700 624 7
RiverBodyOfWater 200 1769 4890 643 17
RiverBodyOfWater 400 1769 4840 641 8
RiverBodyOfWater 800 1769 4980 619 18
Service 50 615 1640 602 7
Service 100 1022 1790 562 6
Service 200 1852 2300 577 9
Service 400 3041 2880 601 6
Service 800 5437 4500 674 30
Service 1600 7334 5350 639 26

Table 2: Execution times per RDF-Type, limited size of start-node subset (using the RiverBodyOfWater
dataset)

17

	Introduction
	Related Work
	Approach
	Technology Stack
	Constructing a Subgraph
	Generating Constraints
	Validating Constraints
	Front-end

	Evaluation
	Methodology
	Runtime
	Correctness
	ShEx Generation
	ShEx Validation

	Results
	Future work
	Conclusion
	References
	Contribution Statements
	Appendix
	Code listings and additional data

